M ETU
 Department of Mathematics

1. (15pts) Let $\alpha=5^{7} \cdot(1+2 i)$. What is $N(\alpha)$? Find integers $x, y \geq 0$ such that $x^{2}+y^{2}=N(\alpha)$. Find the number of solutions of the Diophantine equation $x^{2}+y^{2}=N(\alpha)$ with $0 \leq x \leq y$.
Solution: The norm of α is $\left(5^{7}\right)^{2} \cdot 5=5^{15}$. It is easy to see that $\left(5^{7}\right)^{2}+\left(2 \cdot 5^{7}\right)^{2}=5^{15}$. In order to find the number of all solutions of $x^{2}+y^{2}=N(\alpha)$ with $0 \leq x \leq y$, let us set $\pi=1+2 i$. All Gaussian integers with prescribed norm is given by $\beta_{k}=(\pi)^{k}\left(\pi^{\prime}\right)^{15-k}$ for $k \in\{0,1, \ldots, 15\}$. Note that $\beta_{k}^{\prime}=\beta_{15-k}$. Therefore there are 8 such solutions.
2. (15pts) Find the greatest common divisor of Gaussian integers $\alpha=38+i$ and $\beta=85$. Find the prime factorization of α and β. Find Gaussian integers γ and λ such that $\operatorname{gcd}(\alpha, \beta)=\gamma \alpha+\lambda \beta$.

Solution: We apply the divison algorithm. It is easy to see that $\beta=2 \alpha+(9-2 i)$ and $\alpha=(4+i)(9-2 i)$. Therefore the greatest common divisor of α and β is $9-2 i$. Using the inverse division algorithm we find that $9-2 i=-2 \alpha+\beta$. Thus we can pick $\gamma=-2$ and $\lambda=1$. Now we find the prime factorizations of α and β. Note that $N(9-2 i)=85$ and a little insepection shows that $9-2 i=(4+i)(2-i)$. It follows that $\alpha=(4+i)^{2}(2-i)$ and $\beta=(4+i)(4-i)(2+i)(2-i)$.
3. (15pts) Use the arithmetic of the Gaussian integers to determine all solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$. (Hint: Show that $x+i y=u \cdot \alpha^{2}$ for some Gaussian integer α and a unit u.)

Solution: Suppose that (x, y, z) is a primitive solution of $x^{2}+y^{2}=z^{2}$, i.e. $\operatorname{gcd}(x, y, z)=1$. Consider the factorization $(x+i y)(x-i y)=z^{2}$. Note that $\operatorname{gcd}(x+i y, x-i y)$ divides both $2 x$ and $2 y$. Since $\operatorname{gcd}(x, y)=1$ and z is odd, we must have $\operatorname{gcd}(x+i y, x-i y)=1$. A Gaussian prime π divides $x+i y$ an even number of times. Thus $x+i y$ has the form $u \alpha^{2}$ for some Gaussian integer $\alpha=m+n i$. It follows that $x+i y$ is an associate of $\left(m^{2}-n^{2}\right)+i(2 m n)$. As a result $\{x, y\}=\left\{ \pm\left(m^{2}-n^{2}\right), \pm 2 m n\right\}$ produces the set of all primitive solutions if m, n are relatively prime and not both odd.
4. (15pts) Recall that $I_{-2}=\{\alpha \in \mathbb{Q}(\sqrt{-2}): \operatorname{Tr}(\alpha), N(\alpha) \in \mathbb{Z}\}$. Find all elements of I_{-2} of norm less than 10. Determine all primes $p<50$ such that $N(\alpha)=p$ for some $\alpha \in I_{-2}$. Do you see a pattern?
Solution: We know that $I_{-2}=\{x+y w: x, y \in \mathbb{Z}\}$ where $w=\sqrt{-2}$. The norm of $x+y w$ is equal to $x^{2}+2 y^{2}$. We list all elements of I_{-2} of norm less than 10 .

$N(\alpha)$	0	1	2	3	4	5	6	7	8	9
α	0	± 1	$\pm w$	$\pm 1 \pm w$	± 2	\times	$\pm 2 \pm w$	\times	$\pm 2 w$	$\pm 3, \pm 1 \pm 2 w$

The primes p such that $N(\alpha)=p$ for some $\alpha \in I_{-2}$ are given by the set $\{2,3,11,17,19,41,43, \ldots\}$. We will later see that this set is exactly $\{2\} \cup\{p \equiv 1,3(\bmod 8)\}$.

