M E T U Department of Mathematics

Elementary Number Theory II Midterm 2										
Date : April 18, 2013 Time : 12:40 Duration : 50 minutes	4 QUESTIONS ON 2 PAGES 60 TOTAL POINTS									
$\begin{bmatrix} 1 & & \\ & & \\ & & \end{bmatrix}^2 = \begin{bmatrix} 3 & & 4 \\ & & \end{bmatrix} $ Writ	e neatly and justify your work!									

1. (15pts) Let $\alpha = 5^7 \cdot (1+2i)$. What is $N(\alpha)$? Find integers $x, y \ge 0$ such that $x^2 + y^2 = N(\alpha)$. Find the number of solutions of the Diophantine equation $x^2 + y^2 = N(\alpha)$ with $0 \le x \le y$.

Solution: The norm of α is $(5^7)^2 \cdot 5 = 5^{15}$. It is easy to see that $(5^7)^2 + (2 \cdot 5^7)^2 = 5^{15}$. In order to find the number of all solutions of $x^2 + y^2 = N(\alpha)$ with $0 \le x \le y$, let us set $\pi = 1 + 2i$. All Gaussian integers with prescribed norm is given by $\beta_k = (\pi)^k (\pi')^{15-k}$ for $k \in \{0, 1, \ldots, 15\}$. Note that $\beta'_k = \beta_{15-k}$. Therefore there are 8 such solutions.

2. (15pts) Find the greatest common divisor of Gaussian integers $\alpha = 38 + i$ and $\beta = 85$. Find the prime factorization of α and β . Find Gaussian integers γ and λ such that $gcd(\alpha, \beta) = \gamma \alpha + \lambda \beta$.

Solution: We apply the divison algorithm. It is easy to see that $\beta = 2\alpha + (9-2i)$ and $\alpha = (4+i)(9-2i)$. Therefore the greatest common divisor of α and β is 9-2i. Using the inverse division algorithm we find that $9-2i = -2\alpha + \beta$. Thus we can pick $\gamma = -2$ and $\lambda = 1$. Now we find the prime factorizations of α and β . Note that N(9-2i) = 85 and a little insepection shows that 9-2i = (4+i)(2-i). It follows that $\alpha = (4+i)^2(2-i)$ and $\beta = (4+i)(4-i)(2+i)(2-i)$.

3. (15pts) Use the arithmetic of the Gaussian integers to determine all solutions to the Diophantine equation $x^2 + y^2 = z^2$. (Hint: Show that $x + iy = u \cdot \alpha^2$ for some Gaussian integer α and a unit u.)

Solution: Suppose that (x, y, z) is a primitive solution of $x^2 + y^2 = z^2$, i.e. gcd(x, y, z) = 1. Consider the factorization $(x + iy)(x - iy) = z^2$. Note that gcd(x + iy, x - iy) divides both 2x and 2y. Since gcd(x, y) = 1 and z is odd, we must have gcd(x + iy, x - iy) = 1. A Gaussian prime π divides x + iy an even number of times. Thus x + iy has the form $u\alpha^2$ for some Gaussian integer $\alpha = m + ni$. It follows that x + iy is an associate of $(m^2 - n^2) + i(2mn)$. As a result $\{x, y\} = \{\pm (m^2 - n^2), \pm 2mn\}$ produces the set of all primitive solutions if m, n are relatively prime and not both odd.

4. (15pts) Recall that $I_{-2} = \{ \alpha \in \mathbb{Q}(\sqrt{-2}) : Tr(\alpha), N(\alpha) \in \mathbb{Z} \}$. Find all elements of I_{-2} of norm less than 10. Determine all primes p < 50 such that $N(\alpha) = p$ for some $\alpha \in I_{-2}$. Do you see a pattern?

Solution: We know that $I_{-2} = \{x + yw : x, y \in \mathbb{Z}\}$ where $w = \sqrt{-2}$. The norm of x + yw is equal to $x^2 + 2y^2$. We list all elements of I_{-2} of norm less than 10.

$N(\alpha)$	0	1	2	3	4	5	6	7	8	9
α	0	± 1	$\pm w$	$\pm 1\pm w$	± 2	×	$\pm 2 \pm w$	×	$\pm 2w$	$\pm 3, \pm 1 \pm 2w$

The primes p such that $N(\alpha) = p$ for some $\alpha \in I_{-2}$ are given by the set $\{2, 3, 11, 17, 19, 41, 43, \ldots\}$. We will later see that this set is exactly $\{2\} \cup \{p \equiv 1, 3 \pmod{8}\}$.