M E T U Department of Mathematics

Elementary Number Theory II	
Midterm 1	
Code : $Math 366$ Acad. Year : 2013	Last Name : Name :
Semester : Spring Instructor : Küçüksakallı	Student No. :
Date : March 21, 2013 Time : 12:40	Signature : 5 QUESTIONS ON 2 PAGES
Duration $\therefore 50 \text{ minutes}$	60 TOTAL POINTS

1. (12pts) Determine all solutions of the Diophantine equation $(x^4 + 1)^4 + y^8 = (z^2 + 1)^4$.

Solution: The equation $a^4 + b^4 = c^4$ has only the trivial solutions, i.e. either a = 0 or b = 0. Since $x^4 + 1 \neq 0$ we must have y = 0. Note that $|x^4 + 1| = |z^2 + 1|$. As a result $\{(t, 0, \pm t^2) : t \in \mathbb{Z}\}$ is the set of all solutions.

2. (12pts) Determine all solutions of the Pell equation $x^2 - 12y^2 = 1$.

Solution: It is easy to see that (7,2) is a positive solution. We verify that $(x^2 - 1)/12$ for 0 < x < 7 and $12y^2 + 1$ for 0 < y < 2 are not perfect squares. It follows that $(x_1, y_1) = (7, 2)$ is the fundamental solution. Define x_n and y_n by the equation $(7 + 2\sqrt{12})^n = x_n + y_n\sqrt{12}$. All solutions are given by $(\pm x_n, \pm y_n)$ and the trivial solutions $(\pm 1, 0)$.

3. (12pts) Does there exist a solution of the Diophantine equation $x^2 + y^2 = z^2$ such that x - y is divisible by 3 but z is not divisible by 3. Give an example or disprove.

Solution: Suppose that $x \equiv y \pmod{3}$. It follows that $x^2 \equiv y^2 \pmod{3}$. A perfect square is never congruent to 2 modulo 3. Thus $x^2 + y^2 \equiv 0 \pmod{3}$ and z is divisible by 3. There is no solution of $x^2 + y^2 \equiv z^2$ such that x - y is divisible by 3 whereas z is not.

4. (12pts) Express $3145 = 5 \cdot 17 \cdot 37$ as a sum of two squares. Express $7 \cdot 3145$ as a sum four squares. Solution: Consider the Gaussian integer (2 + i)(4 + i)(6 + i) = 36 + 43i. Comparing the norms of both sides we obtain that $3145 = 36^2 + 43^2$. Now consider the the quaternion (2 + i + j + k)(36 + 43i) = 29 + 122i + 79j - 7k. Again by comparing norms, we find that $7 \cdot 3145 = 29^2 + 122^2 + 79^2 + 7^2$.

5. (12pts) Let $k \ge 3$ be an integer. Show that the Diophantine equation $x^2 - y^2 = m^k$ is solvable for any integer m.

Solution: Note that $m^{k-1} \equiv m \pmod{2}$. Thus $m^{k-1} \pm m$ is divisible by 2. Choose $x + y = m^{k-1}$ and x - y = m. The pair $x = (m^{k-1} + m)/2$ and $y = (m^{k-1} - m)/2$ are integers and give a solution for the above equation for each value of m.