Department of Mathematics

Elementary Number Theory II			
Midterm 1			

1. (12pts) Determine all solutions of the Diophantine equation $\left(x^{4}+1\right)^{4}+y^{8}=\left(z^{2}+1\right)^{4}$.

Solution: The equation $a^{4}+b^{4}=c^{4}$ has only the trivial solutions, i.e. either $a=0$ or $b=0$. Since $x^{4}+1 \neq 0$ we must have $y=0$. Note that $\left|x^{4}+1\right|=\left|z^{2}+1\right|$. As a result $\left\{\left(t, 0, \pm t^{2}\right): t \in \mathbb{Z}\right\}$ is the set of all solutions.
2. (12pts) Determine all solutions of the Pell equation $x^{2}-12 y^{2}=1$.

Solution: It is easy to see that $(7,2)$ is a positive solution. We verify that $\left(x^{2}-1\right) / 12$ for $0<x<7$ and $12 y^{2}+1$ for $0<y<2$ are not perfect squares. It follows that $\left(x_{1}, y_{1}\right)=(7,2)$ is the fundamental solution. Define x_{n} and y_{n} by the equation $(7+2 \sqrt{12})^{n}=x_{n}+y_{n} \sqrt{12}$. All solutions are given by $\left(\pm x_{n}, \pm y_{n}\right)$ and the trivial solutions $(\pm 1,0)$.
3. (12pts) Does there exist a solution of the Diophantine equation $x^{2}+y^{2}=z^{2}$ such that $x-y$ is divisible by 3 but z is not divisible by 3 . Give an example or disprove.
Solution: Suppose that $x \equiv y \quad(\bmod 3)$. It follows that $x^{2} \equiv y^{2} \quad(\bmod 3)$. A perfect square is never congruent to 2 modulo 3 . Thus $x^{2}+y^{2} \equiv 0(\bmod 3)$ and z is divisible by 3 . There is no solution of $x^{2}+y^{2}=z^{2}$ such that $x-y$ is divisible by 3 whereas z is not.
4. (12pts) Express $3145=5 \cdot 17 \cdot 37$ as a sum of two squares. Express $7 \cdot 3145$ as a sum four squares. Solution: Consider the Gaussian integer $(2+i)(4+i)(6+i)=36+43 i$. Comparing the norms of both sides we obtain that $3145=36^{2}+43^{2}$. Now consider the the quaternion $(2+i+j+k)(36+43 i)=$ $29+122 i+79 j-7 k$. Again by comparing norms, we find that $7 \cdot 3145=29^{2}+122^{2}+79^{2}+7^{2}$.
5. (12pts) Let $k \geq 3$ be an integer. Show that the Diophantine equation $x^{2}-y^{2}=m^{k}$ is solvable for any integer m.
Solution: Note that $m^{k-1} \equiv m(\bmod 2)$. Thus $m^{k-1} \pm m$ is divisible by 2. Choose $x+y=m^{k-1}$ and $x-y=m$. The pair $x=\left(m^{k-1}+m\right) / 2$ and $y=\left(m^{k-1}-m\right) / 2$ are integers and give a solution for the above equation for each value of m.

