Department of Mathematics

1. $(8+8=\mathbf{1 6} \mathbf{p t s})$ Consider the family of Diophantine equations $x^{n}+y^{n}=z^{2}$ for positive integers $n \geq 1$. If $n=2$, we obtain the Pythagoras equation for which there are infinitely many solutions. If $n=4$, then there are only the trivial solutions by Fermat's infinite descent.

- If n is odd then show that the equation $x^{n}+y^{n}=z^{2}$ has a non-trivial solution.

Solution: Choose $x=y=2$ and $z=2^{(n+1) / 2}$.

- If n is even and $n \geq 6$ then show that the equation $x^{n}+y^{n}=z^{2}$ has only the trivial solutions.

Solution: Without loss of generality, we can assume that $\operatorname{gcd}(x, y, z)=1$. Rewrite the above equation as

$$
\left(x^{n / 2}\right)^{2}+\left(y^{n / 2}\right)^{2}=z^{2} .
$$

Using the formula for primitive solutions of the Pythagoras equation, we find that $x^{n / 2}=m^{2}-n^{2}$ and $y^{n / 2}=2 m n$. Suppose that m is even and n is odd, the other case is similar. Let m_{2} be the 2 -part of m. Then consider the product $(x y)^{n / 2}=\left(m^{2}-n^{2}\right) \cdot 2 m n$. Comparing the 2 -parts of both sides, we obtain that $\left(2 m_{2}\right)^{n / 2}=2 m_{2}$. This is not possible unless $n=2$ (Pythagoras equation) or $m_{2}=0$ (trivial solutions).
2. $(8+8=16 \mathrm{pts})$ Consider the ring $I_{3}=\mathbb{Z} \oplus w \mathbb{Z}$ where $w=\sqrt{3}$.

- Find a unit $u \in I_{3}$ such that the set of units I_{3}^{*} is equal to $\left\{ \pm u^{n}: n \in \mathbb{Z}\right\}$.

Solution: The fundamental solution $(2,1)$ of the Pell's equation $x^{2}-3 y^{2}=1$ gives rise to the unit $u=2+\sqrt{3}$.

- Find a process which gives infinitely many solutions to the Diophantine equation $x^{2}-3 y^{2}=13$. Illustrate your method by giving a few solutions.
Solution: Observe that $(4,1)$ is a solution of the equation $x^{2}-3 y^{2}=13$. Define

$$
x_{n}+y_{n} \sqrt{3}=(4+\sqrt{3})(2+\sqrt{2})^{n}
$$

for any integer n. Then we have $x_{n}^{2}-3 y_{n}^{2}=13$ for each n. For $n=1,2,3$, the corresponding solutions are $(11,6),(40,23),(149,86)$.
3. ($8 \mathbf{p t s}$) Find the number of solutions to the Diophantine equation $x^{2}+y^{2}=30^{6}$.

Solution: We shall count the ideals $\mathfrak{a} \subseteq \mathbb{Z}[i]$ with prescribed norm. Observe that

$$
\mathfrak{a}=(1+i)^{6} \cdot(3)^{3} \cdot(2+i)^{i} \cdot(2-i)^{6-i}
$$

where $i \in\{0,1,2,3,4,5,6\}$. Since there are 7 such ideals, we have 28 solutions of the Diophantine equation $x^{2}+y^{2}=30^{6}$.
4. $(4+4+8=16 \mathrm{pts})$ In the first two parts, fill in the blanks and in the last part prove the second statement.

- Let n be a positive integer. Write $n=\underline{s \cdot n_{0}}$ where $\underline{n_{0}}$ has no square factors. Then $\mathbf{n}=\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{2}$ for some integers x and y if and only if the only prime factors of $\underline{n_{0}}$ are among the primes 2 and the primes $p \equiv 1(\bmod 4)$.
- Let n be a positive integer. Write $n=\underline{s \cdot n_{0}}$ where $\underline{n_{0}}$ has no square factors. Then $\mathbf{n}=\mathbf{x}^{\mathbf{2}}+\mathbf{2} \mathbf{y}^{\mathbf{2}}$ for some integers x and y if and only if the only prime factors of $\underline{n_{0}}$ are among the primes $\underline{2}$ and the primes $p \equiv 1,3(\bmod 8)$.
- Prove the second statement.

Solution: The Minkowski's constant $M_{-2}=4 \sqrt{2} / \pi$ is less than 2 . Thus $\mathbb{Z}[-2]$ is a PID since the class group is trivial. We want to find the prime ideals of this ring of norm p, a rational prime number. Note that the ideal $(\sqrt{-2})$ has norm 2. Suppose that $p \neq 2$. Using the properties of Kronecker symbol, we find that

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)=(-1)^{(p-1) / 2}(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{(p-1)(p+5) / 8}
$$

It follows that -2 is a square modulo p if and only if $p \equiv 1,3(\bmod 8)$.
5. ($8 \mathbf{p t s}$) Show that the Diophantine equation $x^{2}+2013 y^{2}=5^{2013}$ has no solutions.

Solution: We have

$$
\left(\frac{-2013}{5}\right)=\left(\frac{2}{5}\right)=-1
$$

It follows that $\mathfrak{p}=(5)$ is the only prime ideal of the ring I_{-2013} whose norm is divisible by 5 . It is not possible to produce an ideal which has norm 5^{2013}. Therefore the Diophantine equation above has no solution.
6. $(\mathbf{4}+\mathbf{4}+\mathbf{4}+\mathbf{4}=\mathbf{1 6} \mathbf{~ p t s})$ Consider the ring $I_{-23}=\mathbb{Z} \oplus w \mathbb{Z}$ where $w=(\sqrt{-23}+1) / 2$.

- Show that $N(a+b w)=a^{2}+a b+6 b^{2}$ for $a, b \in \mathbb{Z}$.

Solution: Recall that $N(a+b w)=(a+b w) \cdot\left(a+b w^{\prime}\right)$ where $w^{\prime}=(-\sqrt{-23}+1) / 2$ is the conjugate of w. The result follows easily.

- Show that $\mathfrak{p}_{3}=(3,1+\sqrt{-23})$ is not principal.

Solution: Assume otherwise then we must have $\alpha=a+b w$ such that $N(\alpha)=3$. It means that $a^{2}+a b+6 b^{2}=3$ for some integers a, b and this is a contradiction.

- For a positive integer n, show that \mathfrak{p}_{3}^{n} is principal if and only if $3 \mid n$.

Solution: Note that $N(1+2 w)=27$. It implies that \mathfrak{p}_{3}^{3} is principal and generated by $1+2 w$ or its conjugate. Using the class group structure, we conclude that \mathfrak{p}_{3}^{n} is principal if and only if $3 \mid n$.

- Find the number of solutions to the Diophantine equation $a^{2}+a b+6 b^{2}=3^{k}$ for each positive integer k.
Solution: Note that $\mathfrak{p}_{3} \mathfrak{q}_{3}, \mathfrak{p}_{3}^{3}, \mathfrak{q}_{3}$ are principal ideals with norms $3^{2}, 3^{3}, 3^{3}$ respectively. Let a_{k} be the number of solutions of the Diophantine equation $a^{2}+a b+6 b^{2}=3^{k}$. For the first few values, we verify that $a_{1}=0, a_{2}=2, a_{3}=4, a_{4}=2, a_{5}=2, a_{6}=6$. Now it is easy to see that $a_{k+6}=a_{k}+4$ for each positive integer k.

