M E T U Department of Mathematics

Elementary Number Theory II	
Final	
Code : Math 366 Acad. Year : 2013 Semester : Spring Instructor : Küçüksakallı	Last Name : Name : Student No. : Signature :
Date: June 3, 2013Time: $9:30$ Duration: 120 minutes	6 QUESTIONS ON 4 PAGES 80 TOTAL POINTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Good luck!

1. (8+8=16 pts) Consider the family of Diophantine equations $x^n + y^n = z^2$ for positive integers $n \ge 1$. If n = 2, we obtain the Pythagoras equation for which there are infinitely many solutions. If n = 4, then there are only the trivial solutions by Fermat's infinite descent.

- If n is odd then show that the equation $x^n + y^n = z^2$ has a non-trivial solution. Solution: Choose x = y = 2 and $z = 2^{(n+1)/2}$.
- If n is even and $n \ge 6$ then show that the equation $x^n + y^n = z^2$ has only the trivial solutions. Solution: Without loss of generality, we can assume that gcd(x, y, z) = 1. Rewrite the above equation as

$$(x^{n/2})^2 + (y^{n/2})^2 = z^2.$$

Using the formula for primitive solutions of the Pythagoras equation, we find that $x^{n/2} = m^2 - n^2$ and $y^{n/2} = 2mn$. Suppose that m is even and n is odd, the other case is similar. Let m_2 be the 2-part of m. Then consider the product $(xy)^{n/2} = (m^2 - n^2) \cdot 2mn$. Comparing the 2-parts of both sides, we obtain that $(2m_2)^{n/2} = 2m_2$. This is not possible unless n = 2 (Pythagoras equation) or $m_2 = 0$ (trivial solutions).

2. (8+8=16 pts) Consider the ring $I_3 = \mathbb{Z} \oplus w\mathbb{Z}$ where $w = \sqrt{3}$.

- Find a unit $u \in I_3$ such that the set of units I_3^* is equal to $\{\pm u^n : n \in \mathbb{Z}\}$. Solution: The fundamental solution (2, 1) of the Pell's equation $x^2 - 3y^2 = 1$ gives rise to the unit $u = 2 + \sqrt{3}$.
- Find a process which gives infinitely many solutions to the Diophantine equation $x^2 3y^2 = 13$. Illustrate your method by giving a few solutions.

Solution: Observe that (4,1) is a solution of the equation $x^2 - 3y^2 = 13$. Define

$$x_n + y_n \sqrt{3} = (4 + \sqrt{3})(2 + \sqrt{2})^n$$

for any integer n. Then we have $x_n^2 - 3y_n^2 = 13$ for each n. For n = 1, 2, 3, the corresponding solutions are (11, 6), (40, 23), (149, 86).

3. (8 pts) Find the number of solutions to the Diophantine equation $x^2 + y^2 = 30^6$. Solution: We shall count the ideals $\mathfrak{a} \subseteq \mathbb{Z}[i]$ with prescribed norm. Observe that

$$\mathfrak{a} = (1+i)^6 \cdot (3)^3 \cdot (2+i)^i \cdot (2-i)^{6-i}$$

where $i \in \{0, 1, 2, 3, 4, 5, 6\}$. Since there are 7 such ideals, we have 28 solutions of the Diophantine equation $x^2 + y^2 = 30^6$.

4. (4+4+8=16 pts) In the first two parts, fill in the blanks and in the last part prove the second statement.

- Let *n* be a positive integer. Write $n = \underline{s \cdot n_0}$ where $\underline{n_0}$ has no square factors. Then $\mathbf{n} = \mathbf{x}^2 + \mathbf{y}^2$ for some integers *x* and *y* if and only if the only prime factors of $\underline{n_0}$ are among the primes 2 and the primes $p \equiv 1 \pmod{4}$.
- Let *n* be a positive integer. Write $n = \underline{s \cdot n_0}$ where $\underline{n_0}$ has no square factors. Then $\mathbf{n} = \mathbf{x}^2 + 2\mathbf{y}^2$ for some integers *x* and *y* if and only if the only prime factors of $\underline{n_0}$ are among the primes 2 and the primes $p \equiv 1, 3 \pmod{8}$.
- Prove the second statement.

Solution: The Minkowski's constant $M_{-2} = 4\sqrt{2}/\pi$ is less than 2. Thus $\mathbb{Z}[-2]$ is a PID since the class group is trivial. We want to find the prime ideals of this ring of norm p, a rational prime number. Note that the ideal $(\sqrt{-2})$ has norm 2. Suppose that $p \neq 2$. Using the properties of Kronecker symbol, we find that

$$\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) = (-1)^{(p-1)/2}(-1)^{(p^2-1)/8} = (-1)^{(p-1)(p+5)/8}.$$

It follows that -2 is a square modulo p if and only if $p \equiv 1, 3 \pmod{8}$.

5. (8 pts) Show that the Diophantine equation $x^2 + 2013y^2 = 5^{2013}$ has no solutions. Solution: We have

$$\left(\frac{-2013}{5}\right) = \left(\frac{2}{5}\right) = -1$$

It follows that $\mathfrak{p} = (5)$ is the only prime ideal of the ring I_{-2013} whose norm is divisible by 5. It is not possible to produce an ideal which has norm 5^{2013} . Therefore the Diophantine equation above has no solution.

- 6. (4+4+4+4=16 pts) Consider the ring $I_{-23} = \mathbb{Z} \oplus w\mathbb{Z}$ where $w = (\sqrt{-23}+1)/2$.
 - Show that N(a + bw) = a² + ab + 6b² for a, b ∈ Z.
 Solution: Recall that N(a + bw) = (a + bw) · (a + bw') where w' = (-√-23 + 1)/2 is the conjugate of w. The result follows easily.
 - Show that $\mathfrak{p}_3 = (3, 1 + \sqrt{-23})$ is not principal. Solution: Assume otherwise then we must have $\alpha = a + bw$ such that $N(\alpha) = 3$. It means that $a^2 + ab + 6b^2 = 3$ for some integers a, b and this is a contradiction.
 - For a positive integer n, show that p₃ⁿ is principal if and only if 3|n.
 Solution: Note that N(1+2w) = 27. It implies that p₃³ is principal and generated by 1+2w or its conjugate. Using the class group structure, we conclude that p₃ⁿ is principal if and only if 3|n.
 - Find the number of solutions to the Diophantine equation $a^2 + ab + 6b^2 = 3^k$ for each positive integer k.

Solution: Note that $\mathfrak{p}_3\mathfrak{q}_3$, \mathfrak{p}_3^3 , \mathfrak{q}_3 are principal ideals with norms 3^2 , 3^3 , 3^3 respectively. Let a_k be the number of solutions of the Diophantine equation $a^2 + ab + 6b^2 = 3^k$. For the first few values, we verify that $a_1 = 0$, $a_2 = 2$, $a_3 = 4$, $a_4 = 2$, $a_5 = 2$, $a_6 = 6$. Now it is easy to see that $a_{k+6} = a_k + 4$ for each positive integer k.