METU, Spring 2020, Math 366.
 Exercise Set 3

1. For each of the following Diophantine equations (or system of Diophantine equations), either show that it has infinitely many nontrivial solutions or determine all solutions.
(a) $x^{2}+y^{2}=z^{3}$.
(b) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$.
(c) $\frac{1}{x^{4}}+\frac{1}{y^{4}}=\frac{1}{z^{4}}$.
(d) $x^{2}+y^{2}=z^{2}$ and $x^{2}+z^{2}=w^{2}$.
(e) $x^{2}+y^{2}=z^{2}-1$ and $x^{2}-y^{2}=w^{2}-1$.
(f) $\left(x^{2}+y^{2}-2\right)^{4}+16=z^{2}$.
(g) $x^{4}+y^{4}=2 z^{2}$.
(h) $x^{4}-4 y^{4}=z^{2}$.
2. A positive rational number n is called a congruent number if there is a rational right triangle with area n, i.e. if there are rational numbers $a, b, c>0$ such that $a^{2}+b^{2}=c^{2}$ and $a b / 2=n$. Show that 1 is not a congruent number.
3. Determine whether the following integers can be written as sums of two squares. In each case determine all possible representations as a sum of two squares.

$$
n=25,49,85,125,180,366,1105,2015,2017 .
$$

4. Show that any prime congruent one modulo four can be represented uniquely (aside from the order and signs of summands) as a sum of two squares.
5. If p and q are primes of the form $4 k+1$, then show that $n=p \cdot q$ can be written as a sum of two squares in at least two different ways (aside from the order and signs of summands).
6. Show that the Diophantine equation $5 x^{2}+14 x y+10 y^{2}=n$ has a solution if and only if n is representable as a sum of two squares.
7. Show that every prime number p of the form $8 k+1$ or $8 k+3$ can be written as $p=x^{2}+2 y^{2}$ for some integers x and y.
