M E T U Department of Mathematics

Elementary Number Theory I										
Midterm 2										
Code : Math 365	Last Name :									
Acad. Year $: 2014$	Name :									
Semester : Fall	Student No. :									
Instructor : Küçüksakallı	Signature :									
Date : December 8, 2014										
Time : 17:40	8 QUESTIONS ON 4 PAGES 100 TOTAL POINTS									
Duration : 120 minutes										
1 2 3 4 5 6	7 8									

1. (15pts) (a) Prove that the odd prime divisors of the integer $n^2 + 1$ are of the form 4k + 1.

Solution: Let p be an odd prime divisor of $n^2 + 1$. We have $n^2 + 1 \equiv 0 \pmod{p}$. Since n and p are relatively prime, we can talk about the order of n modulo p, say h. Note that $n^4 \equiv (n^2)^2 \equiv (-1)^2 \equiv 1 \pmod{p}$. As a result h = 1, 2 or 4. Since $n^2 \equiv -1 \pmod{p}$, we can't have h = 1 or h = 2. Thus h = 4. Since h = 4 divides $\phi(p) = p - 1$. We conclude that p is of the form 4k + 1.

(b) Prove that there are infinitely many primes of the form 4k + 1.

Solution: Assume otherwise and let $\{p_1, p_2, \ldots, p_r\}$ be a complete list of primes of the form 4k + 1. Consider $N = (2p_1 \cdots p_r)^2 + 1$. This is an odd integer and it is of the form $n^2 + 1$, thus its prime factors are of the form 4k + 1 by the previous part. So we must have $p_i|N$ for some *i*. However this gives a contradiction since $p_i|N - (2p_1 \cdots p_r)^2 = 1$.

2. (10pts) Define
$$F(n) = \sum_{d|n} d^2$$
. Determine $F(7!)$.

Solution: Let $f(n) = n^2$ and let n_1, n_2 be relatively prime integers. Observe that

$$f(n_1n_2) = (n_1n_2)^2 = n_1^2n_2^2 = f(n_1)f(n_2).$$

Thus f(n) is a multiplicative function. It follows that F(n) is a multiplicative function too. Therefore

$$F(7!) = F(2^4 \cdot 3^2 \cdot 5 \cdot 7)$$

= $F(2^4) \cdot F(3^2) \cdot F(5) \cdot F(7)$
= $(1 + 4 + 16 + 64 + 256) \cdot (1 + 9 + 81) \cdot (1 + 25) \cdot (1 + 49)$
= $40340300.$

3. (15pts) In a lengthy ciphertext message obtained by a linear cipher $C \equiv a \cdot \mathcal{P} + b$ (mod 26), the most frequently occuring letter is R and the second most frequent is W.

ſ	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М
	00	01	02	03	04	05	06	07	08	09	10	11	12
Ì	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
	13	14	15	16	17	18	19	20	21	22	23	24	25

(a) Break the cipher by determining the values of a and b. (Hint: The most often used letter in English text is E, followed by T.)

Solution: We must have $a \cdot 4 + b \equiv 17 \pmod{26}$ and $a \cdot 19 + b \equiv 22 \pmod{26}$. Eliminating b, we obtain $a \cdot 15 = 5 \pmod{26}$. It follows that a = 9 and therefore b = 7.

(b) Write out the plaintext for the intercepted message "TBCC QBCC!".

Solution: Solving \mathcal{P} from $\mathcal{C} \equiv a \cdot \mathcal{P} + b \pmod{26}$, we obtain that $\mathcal{P} \equiv a^{-1} \cdot (\mathcal{C} - b) \pmod{26}$. In order to recover the intercepted message, we simply compute

$$\mathcal{P} \equiv 3(\mathcal{C} - 7) \pmod{26}$$

The ciphertext T=19 corresponds to the plaintext K=10 since $3(19 - 7) = 10 \pmod{26}$. Similarly the ciphers B and C corresponds to the plaintexts I and L, respectively. Therefore the original message is "KILL BILL!".

4. (10pts) Let p be a prime and let $n = p^3$. Verify that $\sum_{d|n} \sigma(d)\phi(n/d) = n\tau(n)$.

Solution: Recall that $\sigma(p^k) = (p^{k+1}-1)/(p-1)$, $\phi(p^k) = p^k - p^{k-1}$ and $\tau(p^k) = k+1$ for any $k \ge 1$. For $n = p^3$, we have

$$\sum_{d|n} \sigma(d)\phi(n/d) = \sigma(1)\phi(p^3) + \sigma(p)\phi(p^2) + \sigma(p^2)\phi(p) + \sigma(p^3)\phi(1)$$

= $(p^3 - p^2) + (p^3 - p) + (p^3 - 1) + (p^3 + p^2 + p + 1)$
= $4p^3$
= $\tau(n)n$.

This verifies the formula above for $n = p^3$.

5. (15pts) (a) Find all values of n such that $\phi(n) = 24$.

Solution: The prime factors of n must be from the set $\{2, 3, 5, 7, 13\}$. To see this note that any prime factor p of n must be less than n + 1 = 25. Moreover we can't have p = 11, 17, 19, 23 either. Otherwise $\phi(n)$ would be divisible by 10, 16, 18, 22 respectively which is impossible. If 13|n, then n must be 39, 52, 78. If 7|n, then n = 35, 56, 70, 84. The remaining values are 45, 72, 90. In total there are ten different values.

(b) Find the smallest 6 values of n such that $15|\phi(n)$.

Solution: Suppose that $n = p_1^{r_1} \cdots p_k^{r_k}$. There are two possibilities. We may have $15|\phi(p_i^{r_i})$ for some $1 \le i \le k$. It is also possible that $3|\phi(p_i^{r_i})$ for some i and $5|\phi(p_j^{r_j})$ for some $j \ne i$. The first few integers fitting into the first pattern are $31, 61, 62, 93, 122, 124, 151, \ldots$. The first few integers in the second pattern are $77, 99, 143, 154, \ldots$. Thus the smallest six values of such integers are 31, 61, 62, 77, 93 and 99.

6. (10pts) If m and n are relatively prime positive integers, then show that

$$m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}.$$

Solution: Since m and n are relatively prime we have $m^{\phi(n)} \equiv 1 \pmod{n}$ and $n^{\phi(m)} \equiv 1 \pmod{m}$ by Euler's theorem. Moreover $n^{\phi(m)} \equiv 0 \pmod{n}$ and $m^{\phi(n)} \equiv 0 \pmod{m}$. It follows that $m^{\phi(n)} + n^{\phi(m)}$ is congruent to $1 + 0 = 1 \pmod{b}$ both m and n. Since m and n are relatively prime $m^{\phi(n)} + n^{\phi(m)}$ is congruent to a unique integer $x \pmod{m}$ by Chinese remainder theorem. Obviously x = 1 and this finishes the proof.

7. (15pts) Assume that the order of a modulo n is h and the order of b modulo n is k.
(a) Show that the order of ab modulo n divides hk.

Solution: It is enough to show that $(ab)^{hk} \equiv 1 \pmod{n}$. We have

$$(ab)^{hk} = (a^h)^k \cdot (b^k)^h \equiv 1^k \cdot 1^h \equiv 1 \pmod{n}.$$

Thus hk is divisible by the order of ab modulo n.

(b) If gcd(h, k) = 1 then show that order of ab modulo n is precisely hk.

Solution: Let ℓ be the order of $ab \mod n$. By the previous part we know that $\ell | hk$. We need to show that $hk|\ell$. Since h and k are relatively prime, it is enough to show that $h|\ell$ and $k|\ell$. Using the hypothesis we obtain $(ab)^{\ell} = a^{\ell}b^{\ell} \equiv 1 \pmod{n}$. Raising the last congruence to the power k we get $(a^{\ell}b^{\ell})^k \equiv a^{\ell k}1^{\ell} \equiv 1 \pmod{n}$. It follows that $h|\ell k$. Since gcd(h,k) = 1, we must have $h|\ell$. Similarly one can show that $k|\ell$. This finishes the proof.

8. (10pts) Let n > 1 be an integer with prime factorization $n = p_1^{r_1} \cdots p_k^{r_k}$. Show that

$$\sum_{d|n} d\mu(d) = (1 - p_1) \cdots (1 - p_k).$$

Solution: Let $d = d_1 d_2$ with $gcd(d_1, d_2) = 1$. Then we have $d\mu(d) = [d_1\mu(d_1)][d_2\mu(d_2)]$ since d and $\mu(d)$ are both multiplicative functions. It follows that $d\mu(d)$ and therefore $\sum_{d|n} d\mu(d)$ is multiplicative. It suffices to show that

$$\sum_{d|p^k} d\mu(d) = 1 - p$$

for some prime number p. Note that this sum is trivial after the first two terms since $\mu(p^i) = 0$ for $i \ge 2$. Thus $\sum_{d|p^k} d\mu(d) = 1 \cdot \mu(1) + p \cdot \mu(p) = 1 - p$ and this finishes the proof.