M ETU
 Department of Mathematics

Elementary Number Theory I			
Midterm 2			
 Code $:$ Math 365 Acad. Year $: 2014$ Semester $:$ Fall Instructor $:$ Küçüksakallı $:$ December 8, 2014 Date $: 17: 40$ Time $: 120$ minutes Duration		Last Name Name Student No. Signature	
			QUESTIONS ON 4 PAGES
			100 TOTAL POINTS
${ }^{2}$	${ }^{3}$	${ }^{7}{ }^{8}$	

1. (15pts) (a) Prove that the odd prime divisors of the integer $n^{2}+1$ are of the form $4 k+1$.

Solution: Let p be an odd prime divisor of $n^{2}+1$. We have $n^{2}+1 \equiv 0(\bmod p)$. Since n and p are relatively prime, we can talk about the order of n modulo p, say h. Note that $n^{4} \equiv\left(n^{2}\right)^{2} \equiv(-1)^{2} \equiv 1(\bmod p)$. As a result $h=1,2$ or 4 . Since $n^{2} \equiv-1(\bmod p)$, we can't have $h=1$ or $h=2$. Thus $h=4$. Since $h=4$ divides $\phi(p)=p-1$. We conclude that p is of the form $4 k+1$.
(b) Prove that there are infinitely many primes of the form $4 k+1$.

Solution: Assume otherwise and let $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ be a complete list of primes of the form $4 k+1$. Consider $N=\left(2 p_{1} \cdots p_{r}\right)^{2}+1$. This is an odd integer and it is of the form $n^{2}+1$, thus its prime factors are of the form $4 k+1$ by the previous part. So we must have $p_{i} \mid N$ for some i. However this gives a contradiction since $p_{i} \mid N-\left(2 p_{1} \cdots p_{r}\right)^{2}=1$.
2. (10pts) Define $F(n)=\sum_{d \mid n} d^{2}$. Determine $F(7!)$.

Solution: Let $f(n)=n^{2}$ and let n_{1}, n_{2} be relatively prime integers. Observe that

$$
f\left(n_{1} n_{2}\right)=\left(n_{1} n_{2}\right)^{2}=n_{1}^{2} n_{2}^{2}=f\left(n_{1}\right) f\left(n_{2}\right) .
$$

Thus $f(n)$ is a multiplicative function. It follows that $F(n)$ is a multiplicative function too. Therefore

$$
\begin{aligned}
F(7!) & =F\left(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\right) \\
& =F\left(2^{4}\right) \cdot F\left(3^{2}\right) \cdot F(5) \cdot F(7) \\
& =(1+4+16+64+256) \cdot(1+9+81) \cdot(1+25) \cdot(1+49) \\
& =40340300 .
\end{aligned}
$$

3. (15pts) In a lengthy ciphertext message obtained by a linear cipher $\mathcal{C} \equiv a \cdot \mathcal{P}+b$ $(\bmod 26)$, the most frequently occuring letter is R and the second most frequent is W.

A	B	C	D	E	F	G	H	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

(a) Break the cipher by determining the values of a and b. (Hint: The most often used letter in English text is E, followed by T.)

Solution: We must have $a \cdot 4+b \equiv 17(\bmod 26)$ and $a \cdot 19+b \equiv 22(\bmod 26)$. Eliminating b, we obtain $a \cdot 15=5(\bmod 26)$. It follows that $a=9$ and therefore $b=7$.
(b) Write out the plaintext for the intercepted message "TBCC QBCC!".

Solution: Solving \mathcal{P} from $\mathcal{C} \equiv a \cdot \mathcal{P}+b(\bmod 26)$, we obtain that $\mathcal{P} \equiv a^{-1} \cdot(\mathcal{C}-b)$ (mod 26). In order to recover the intercepted message, we simply compute

$$
\mathcal{P} \equiv 3(\mathcal{C}-7) \quad(\bmod 26)
$$

The ciphertext $\mathrm{T}=19$ corresponds to the plaintext $\mathrm{K}=10$ since $3(19-7)=10(\bmod 26)$. Similarly the ciphers B and C corresponds to the plaintexts I and L, respectively. Therefore the original message is "KILL BILL!".
4. (10pts) Let p be a prime and let $n=p^{3}$. Verify that $\sum_{d \mid n} \sigma(d) \phi(n / d)=n \tau(n)$.

Solution: Recall that $\sigma\left(p^{k}\right)=\left(p^{k+1}-1\right) /(p-1), \phi\left(p^{k}\right)=p^{k}-p^{k-1}$ and $\tau\left(p^{k}\right)=k+1$ for any $k \geq 1$. For $n=p^{3}$, we have

$$
\begin{aligned}
\sum_{d \mid n} \sigma(d) \phi(n / d) & =\sigma(1) \phi\left(p^{3}\right)+\sigma(p) \phi\left(p^{2}\right)+\sigma\left(p^{2}\right) \phi(p)+\sigma\left(p^{3}\right) \phi(1) \\
& =\left(p^{3}-p^{2}\right)+\left(p^{3}-p\right)+\left(p^{3}-1\right)+\left(p^{3}+p^{2}+p+1\right) \\
& =4 p^{3} \\
& =\tau(n) n
\end{aligned}
$$

This verifies the formula above for $n=p^{3}$.
5. (15pts) (a) Find all values of n such that $\phi(n)=24$.

Solution: The prime factors of n must be from the set $\{2,3,5,7,13\}$. To see this note that any prime factor p of n must be less than $n+1=25$. Moreover we can't have $p=11,17,19,23$ either. Otherwise $\phi(n)$ would be divisible by $10,16,18,22$ respectively which is impossible. If $13 \mid n$, then n must be $39,52,78$. If $7 \mid n$, then $n=35,56,70,84$. The remaining values are $45,72,90$. In total there are ten different values.
(b) Find the smallest 6 values of n such that $15 \mid \phi(n)$.

Solution: Suppose that $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$. There are two possibilities. We may have $15 \mid \phi\left(p_{i}^{r_{i}}\right)$ for some $1 \leq i \leq k$. It is also possible that $3 \mid \phi\left(p_{i}^{r_{i}}\right)$ for some i and $5 \mid \phi\left(p_{j}^{r_{j}}\right)$ for some $j \neq i$. The first few integers fitting into the first pattern are $31,61,62,93,122,124,151, \ldots$ The first few integers in the second pattern are $77,99,143,154, \ldots$. Thus the smallest six values of such integers are $31,61,62,77,93$ and 99 .
6. (10pts) If m and n are relatively prime positive integers, then show that

$$
m^{\phi(n)}+n^{\phi(m)} \equiv 1 \quad(\bmod m n)
$$

Solution: Since m and n are relatively prime we have $m^{\phi(n)} \equiv 1(\bmod n)$ and $n^{\phi(m)} \equiv 1$ $(\bmod m)$ by Euler's theorem. Moreover $n^{\phi(m)} \equiv 0(\bmod n)$ and $m^{\phi(n)} \equiv 0(\bmod m)$. It follows that $m^{\phi(n)}+n^{\phi(m)}$ is congruent to $1+0=1$ modulo both m and n. Since m and n are relatively prime $m^{\phi(n)}+n^{\phi(m)}$ is congruent to a unique integer x modulo $m n$ by Chinese remainder theorem. Obviously $x=1$ and this finishes the proof.
7. (15pts) Assume that the order of a modulo n is h and the order of b modulo n is k. (a) Show that the order of $a b$ modulo n divides $h k$.

Solution: It is enough to show that $(a b)^{h k} \equiv 1(\bmod n)$. We have

$$
(a b)^{h k}=\left(a^{h}\right)^{k} \cdot\left(b^{k}\right)^{h} \equiv 1^{k} \cdot 1^{h} \equiv 1 \quad(\bmod n) .
$$

Thus $h k$ is divisible by the order of $a b$ modulo n.
(b) If $\operatorname{gcd}(h, k)=1$ then show that order of $a b$ modulo n is precisely $h k$.

Solution: Let ℓ be the order of $a b$ modulo n. By the previous part we know that $\ell \mid h k$. We need to show that $h k \mid \ell$. Since h and k are relatively prime, it is enough to show that $h \mid \ell$ and $k \mid \ell$. Using the hypothesis we obtain $(a b)^{\ell}=a^{\ell} b^{\ell} \equiv 1(\bmod n)$. Raising the last congruence to the power k we get $\left(a^{\ell} b^{\ell}\right)^{k} \equiv a^{\ell k} 1^{\ell} \equiv 1(\bmod n)$. It follows that $h \mid \ell k$. Since $\operatorname{gcd}(h, k)=1$, we must have $h \mid \ell$. Similarly one can show that $k \mid \ell$. This finishes the proof.
8. (10pts) Let $n>1$ be an integer with prime factorization $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$. Show that

$$
\sum_{d \mid n} d \mu(d)=\left(1-p_{1}\right) \cdots\left(1-p_{k}\right)
$$

Solution: Let $d=d_{1} d_{2}$ with $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. Then we have $d \mu(d)=\left[d_{1} \mu\left(d_{1}\right)\right]\left[d_{2} \mu\left(d_{2}\right)\right]$ since d and $\mu(d)$ are both multiplicative functions. It follows that $d \mu(d)$ and therefore $\sum_{d \mid n} d \mu(d)$ is multiplicative. It suffices to show that

$$
\sum_{d \mid p^{k}} d \mu(d)=1-p
$$

for some prime number p. Note that this sum is trivial after the first two terms since $\mu\left(p^{i}\right)=0$ for $i \geq 2$. Thus $\sum_{d \mid p^{k}} d \mu(d)=1 \cdot \mu(1)+p \cdot \mu(p)=1-p$ and this finishes the proof.

