M ETU
 Department of Mathematics

Elementary Number Theory I Midterm 1			
Code Acad. Year Semester Instructor	: Math 365 : 2014 : Fall : Küçüksakallı	Last Name Name Student No. Signature	
Time Duration	$: 17: 40$: 100 minutes	8 QUESTIONS ON 4 PAGES 100 TOTAL POINTS	
2	$\left.{ }^{3} \times{ }^{4}\right]^{5}{ }^{6}$	${ }^{7}{ }^{8}$	

1. (15pts) Let $a=4321$ and $b=3480$. Show that $\operatorname{gcd}(a, b)=29$. Find $x, y \in \mathbb{Z}$ such that $a x+b y=29$.

Solution: Applying the Euclidean algorithm we find that

$$
\begin{aligned}
4321 & =1 \cdot 3480+841 \\
3480 & =4 \cdot 841+116 \\
841 & =7 \cdot 116+29 \\
116 & =4 \cdot 29+0 .
\end{aligned}
$$

Thus we conclude that $\operatorname{gcd}(4321,3480)=29$. Applying the algorithm in reverse we find a pair of integers $x=29$ and $y=-36$ such that $a x+b y=29$:

$$
\begin{aligned}
29 & =841-7 \cdot 116 \\
& =841-7(3480-4 \cdot 841) \\
& =29 \cdot 841-7 \cdot 3480 \\
& =29(4321-3480)-7 \cdot 3480 \\
& =29 \cdot 4321-36 \cdot 3480 .
\end{aligned}
$$

2. (10pts) Consider the Diophantine equation $20 x+35 y=1000$. Determine all solutions in integers. How many solutions are there in positive integers?

Solution: Note that $\left(x_{0}, y_{0}\right)=(50,0)$ is a solution of the equation. Other solutions are given by $(x, y)=(50-7 t, 0+4 t)$ since $\operatorname{gcd}(20,35)=5$. In order to obtain solutions in positive integers, we must have $0<t<50 / 7$. There are only 7 solutions in positive integers corresponding $1 \leq t \leq 7$.
3. (15pts) When eggs in a basket are removed $5,6,7$ at a time, there remain $1,2,4$ eggs respectively. If there are less than 600 eggs in the basket, what are the possible numbers of eggs that could have been in the basket.

Solution: We are required to solve the following system:

$$
\begin{aligned}
& x \equiv 1 \quad(\bmod 5), \\
& x \equiv 2 \quad(\bmod 6), \\
& x \equiv 4 \quad(\bmod 7) .
\end{aligned}
$$

Consider the corresponding equations $42 x_{1} \equiv 1(\bmod 5), 35 x_{2} \equiv 1(\bmod 6)$ and $30 x_{3} \equiv 1$ $(\bmod 7)$. From these equations we find that $x_{1}=3, x_{2}=5$ and $x_{3}=4$ respectively. Thus

$$
\tilde{x}=1 \cdot 42 \cdot 3+2 \cdot 35 \cdot 5+4 \cdot 30 \cdot 4 \equiv 116 \quad(\bmod 210)
$$

is a solution of the system. The possible numbers of eggs are 116, 326 and 536 by Chinese remainder theorem.
4. (10pts) If $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$, then show that $\operatorname{gcd}(a b, n)=1$.

Solution: Since $\operatorname{gcd}(a, n)=1$, there exist integers x, y such that $a x+n y=1$. Since $\operatorname{gcd}(b, n)=1$, there exist integers r, s such that $b r+n s=1$. Combining these two equations together, we obtain

$$
1=(a x+n y)(b r+n s)=(a b)(x r)+(n)(y b r+s a x+n y s) .
$$

Since there exist integers $u=x r$ and $v=y b r+s a x+n y s$ such that $(a b) u+(n) v=1$, we conclude that $\operatorname{gcd}(a b, n)=1$.
5. (15pts) Show that there are infinitely many primes of the form $6 k+5$ with elementary methods, i.e. do not use Dirichlet's theorem on primes in arithmetic progressions. Can your idea be generalized to show that there are infinitely primes of the form $8 k+7$.

Solution: Assume to the contrary $\left\{q_{1}, \ldots, q_{s}\right\}$ is a complete set of primes of the form $6 k+5$. Consider $N=6 q_{1} \cdots q_{s}-1$ and let $N=r_{1} \ldots r_{t}$ be its prime factorization. Note that $r_{k} \neq 2,3$ for all k. Moreover not all r_{k} can be of the form $6 k+1$. Otherwise their product should be of the form $6 k+1$. Thus there is a prime r_{k} of the form $6 k+5$. So we must have $r_{k}=q_{i}$ for some $1 \leq i \leq s$. From this we obtain $q_{i} \mid 1$ which is a contradiction.

This proof cannot be generalized to show that there are infinitely primes of the form $8 k+7$. The main problem is that there four different family of primes modulo 8 , namely $8 k+1,8 k+3,8 k+5$, and $8 k+7$. This is in contrast with the situtation modulo 4 and 6 for which there are only two families. To be precise, observe that $8 \cdot 7 \cdot 23-1=3 \cdot 3 \cdot 11 \cdot 13$ and none of the divisors is of the form $8 k+7$.
6. (10pts) Consider the 120 digit number $N=321321 \ldots 321$ consisting of 40 consecutive 321's. Determine the remainder of N upon division by 37 . (Hint: $\left.10^{3} \equiv 1(\bmod 37)\right)$

Solution: Note that $N=321 \cdot 1000^{0}+321 \cdot 1000^{1}+\ldots+321 \cdot 1000^{39}$. Since $111=37 \cdot 3$, we have $10^{3}=9 \cdot 111+1 \equiv 1(\bmod 37)$. It follows that $N \equiv \sum_{i=0}^{39} 321 \cdot 1^{i}(\bmod 37)$. Therefore $N \equiv 40 \cdot 321 \equiv 3 \cdot 25 \equiv 1(\bmod 37)$.
7. (15pts) Factor $n=60997$ with the help of the congruences

$$
247^{2} \equiv 2^{2} \cdot 3 \quad(\bmod n) \quad \text { and } \quad 248^{2} \equiv 3 \cdot 13^{2} \quad(\bmod n)
$$

Solution: Given congruences imply that $(247 \cdot 248)^{2} \equiv(2 \cdot 3 \cdot 13)^{2}(\bmod n)$. Set $x=247 \cdot 248$ and $y=2 \cdot 3 \cdot 13$. Note that $x=61256$ and $y=78$. In order to apply the quadratic sieve method, we want to compute $\operatorname{gcd}(x-y, n)$. We have $x-y=61178$ and applying the Euclidean algorithm we obtain

$$
\begin{aligned}
& 61178=1 \cdot 60997+181 \\
& 60997=337 \cdot 181+0 .
\end{aligned}
$$

Dividing n by 181, we find that $n / 181=337$. This gives a factorization of n, that is $n=337 \cdot 181$.
8. (10pts) Let $n=2821$. Note that $n=7 \cdot 13 \cdot 31$. Show that $a^{60} \equiv 1(\bmod n)$ for any integer a with $\operatorname{gcd}(a, n)=1$. Is n a Carmichael number?

Solution: Suppose that a is an integer relatively prime to n. Note that a is not divisible by the prime factors of n, namely 7,13 and 31 . By Fermat's little theorem we have $a^{p-1} \equiv 1$ $(\bmod p)$ for each $p \in\{7,13,31\}$. The least common multiple of $6,12,30$ is equal to 60 and we have $a^{60} \equiv 1(\bmod p)$ for each $p \in\{7,13,31\}$. Since 7,13 and 31 and relatively prime to each other, Chinese remainder theorem implies that there exists a unique solution x (modulo n) such that $a^{60} \equiv x(\bmod n)$. It is obvious that we can take $x=1$. Therefore $a^{60} \equiv 1(\bmod n)$ for any integer a with $\operatorname{gcd}(a, n)=1$.

The integer n is a Carmichael number because n is a composite number satisfying

$$
a^{n-1}=\left(a^{60}\right)^{47} \equiv 1 \quad(\bmod n)
$$

for integers a with $\operatorname{gcd}(a, n)=1$.

