M E T U Department of Mathematics

Elementary Number Theory I	
Final	
Code: Math 365Acad. Year: 2014Semester: FallInstructor: Küçüksakallı	Last Name : Name : Student No. : Signature :
Date: January 5, 2014Time: 13:30Duration: 150 minutes	7 QUESTIONS ON 4 PAGES 100 TOTAL POINTS
1 2 3 4 5 6	7

1. (24pts) For each of the following statements determine if it is true or false. If it is true, explain briefly. If it is false, give a counter example.

(a) If a is an integer then $6|a(a^2+11)$.

Solution: TRUE. The integer a is congruent 0, 1, 2, 3, 4 or 5 modulo 6. In either case $a(a^2 + 11) \equiv 0 \pmod{6}$.

(b) If gcd(a, b) = 1, then gcd(a + 2b, 2a + b) = 1.

Solution: FALSE. If a = b = 1, then gcd(a + 2b, 2a + b) = 3.

(c) Any positive integer of the form 3k + 2 has a prime divisor of the same form.

Solution: TRUE. Let p be a prime divisor of 3k + 2. Then $p \neq 3$. Thus $p \equiv 1, 2 \pmod{3}$. If all the prime divisors of 3k + 2 are of the form 3m + 1 then so is 3k + 2 which is impossible.

(d) If gcd(m,n) > 2, then the system $x \equiv 1 \pmod{n}$, $x \equiv -1 \pmod{m}$ has no solutions. Solution: TRUE. Let d = gcd(m,n) and assume to the contrary x is such a solution. Then $x \equiv \pm 1 \pmod{d}$. This is possible only if d = 1 or d = 2.

(e) If $a^p \equiv a \pmod{p}$ for all integers a, then p is a prime number.

Solution: FALSE. There are Carmichael numbers.

(f) If r is a primitive root of a prime p then r is a primitive root of $2p^k$ for any $k \ge 1$.

Solution: FALSE. The prime 5 has a primitive root r = 2 whereas r = 2 is not a primitive root of 10.

2. (12pts) Find integers x, y, z such that 77x + 91y + 143z = 1.

Solution: Applying the Euclidean algorithm to the pair (11, 13), it can be found that $6 \cdot 11 - 5 \cdot 13 = 1$. Thus $6 \cdot 77 - 5 \cdot 91 = 7$. Applying the Euclidean algorithm to the pair (7, 143), it can be found that $41 \cdot 7 - 2 \cdot 143 = 1$. Therefore $41(6 \cdot 77 - 5 \cdot 91) - 2 \cdot 143 = 1$. Thus we can choose x = 246, y = -205 and z = -2.

3. (16pts) Define $f(n) = \gcd(n, 200)$ and $F(n) = \sum_{d|n} f(d)$. (a) Show that f is multiplicative.

Solution: Let $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$. It follows that $gcd(n, 200) = gcd(n_1, 200) gcd(n_2, 200)$. Thus $f(n) = f(n_1)f(n_2)$.

(b) Is F multiplicative? Compute F(9000).

Solution: Since f is multiplicative, so is F. We have $F(9000) = F(2^3)F(3^2)F(5^3)$. Thus F(9000) = (1+2+4+8)(1+1+1)(1+5+25+25).

(c) If $N = 10^k + 1$ for some integer $k \ge 1$, then show that $\sum_{d \mid N} \mu(d) F\left(\frac{N}{d}\right) = 1$.

Solution: By Mobius inversion formula the sum is equal to f(N). It is easy to see that f(N) = 1 since N is not divisible by 2 and 5.

4. (12pts) Let n = pq where p and q are twin primes, i.e. |p - q| = 2.

(a) Show that there exists an integer r which is a primitive root of both p and q.

Solution: Let r_1 be a primitive root of p and r_2 be a primitive root of q. By Chinese remainder theorem, there exists an integer r such that $r \equiv r_1 \pmod{p}$ and $r \equiv r_2 \pmod{q}$.

(b) Show that the order of r modulo n is $\phi(n)/2$.

Solution: Since p and q are twin primes, they are congruent to 1 and 3 modulo 4 respectively without loss of generality. Thus gcd(p-1,q-1) = 2 and as a result $lcm(p-1,q-1) = (p-1)(q-1)/2 = \phi(n)/2$. It follows that $r^{\phi(n)/2} \equiv 1 \pmod{n}$. We also need to see that $k = \phi(n)/2$ is the smallest exponent so that $r^k \equiv 1 \pmod{n}$. Since $r^k \equiv 1 \pmod{n}$, we have $r^k \equiv 1 \pmod{p}$ as well. Thus p-1 divides k. Similarly q-1 divides k. As a result lcm(p-1,q-1) divides k. This finishes the proof.

5. (12pts) Consider the integer $N = n^4 + n^3 + n^2 + n + 1$ with $n \ge 1$. If p is a prime divisor of N, then show that p = 5 or $p \equiv 1 \pmod{10}$.

Solution: Let p be a prime divisor of N. Then $N \equiv 0 \pmod{p}$. It follows that $n^5 - 1 \equiv 0 \pmod{p}$. The order of n modulo p can be either 1 or 5. The first case is possible only if p = 5. If p is not 5, then $5|\phi(p) = p - 1$. Thus p is of the form 5k + 1. Since p is prime k must be even and we have $p \equiv 1 \pmod{10}$.

6. (12pts) Let $p \ge 5$ be an odd prime and let r be a primitive root of p.

(a) Show that r^2 is not a primitive root of p.

Solution: Since p is an odd prime (p-1)/2 is an integer. It follows that $(r^2)^{(p-1)/2} \equiv 1 \pmod{p}$. Thus the order of r^2 is less than or equal to $\phi(p)/2 = (p-1)/2$. Thus r^2 is not a primitive root of p.

(b) Show that r^3 is a primitive root of p if and only if $p \equiv 2 \pmod{3}$.

Solution: The order of r^3 modulo p is equal to $\phi(p)/\gcd(\phi(p), 3)$. This order is equal to $\phi(p)$ if and only if $\gcd(p-1, 3) = 1$. This is possible if and only if $p \equiv 2 \pmod{3}$

7. (12pts) Let $p \ge 7$ be a prime. Note that p = 20q + r for some $0 \le r < 20$ by the division algorithm. Show that the equation $x^2 + 5 \equiv 0 \pmod{p}$ has a solution if and only if 0 < r < 10.

Solution: Recall that $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$. We also have $\left(\frac{5}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{5}$ by the quadratic reciprocity law. Combining these facts together by Chinese remainder theorem, we see that $\left(\frac{-5}{p}\right) = 1$ if and only if $r \equiv 1, 3, 7, 9 \pmod{20}$. This finishes the proof.