Department of Mathematics

Elementary Number Theory I		
Final		
Code	: Math 365	Last Name Name Student No. Signature
Acad. Year	: 2014	
Semester	: Fall	
Instructor	: Küçüksakallı	
Date Time	$\text { : January 5, } 2014$: 13:30	7 QUESTIONS ON 4 PAGES100 TOTAL POINTS
Duration	: 150 minutes	
${ }^{2}$	${ }^{3} \times{ }^{4}{ }^{4}$	${ }^{7}$

1. (24pts) For each of the following statements determine if it is true or false. If it is true, explain briefly. If it is false, give a counter example.
(a) If a is an integer then $6 \mid a\left(a^{2}+11\right)$.

Solution: TRUE. The integer a is congruent $0,1,2,3,4$ or 5 modulo 6 . In either case $a\left(a^{2}+11\right) \equiv 0(\bmod 6)$.
(b) If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a+2 b, 2 a+b)=1$.

Solution: FALSE. If $a=b=1$, then $\operatorname{gcd}(a+2 b, 2 a+b)=3$.
(c) Any positive integer of the form $3 k+2$ has a prime divisor of the same form.

Solution: TRUE. Let p be a prime divisor of $3 k+2$. Then $p \neq 3$. Thus $p \equiv 1,2(\bmod 3)$. If all the prime divisors of $3 k+2$ are of the form $3 m+1$ then so is $3 k+2$ which is impossible.
(d) If $\operatorname{gcd}(m, n)>2$, then the system $x \equiv 1(\bmod n), x \equiv-1(\bmod m)$ has no solutions.

Solution: TRUE. Let $d=\operatorname{gcd}(m, n)$ and assume to the contrary x is such a solution. Then $x \equiv \pm 1(\bmod d)$. This is possible only if $d=1$ or $d=2$.
(e) If $a^{p} \equiv a(\bmod p)$ for all integers a, then p is a prime number.

Solution: FALSE. There are Carmichael numbers.
(f) If r is a primitive root of a prime p then r is a primitive root of $2 p^{k}$ for any $k \geq 1$.

Solution: FALSE. The prime 5 has a primitive root $r=2$ whereas $r=2$ is not a primitive root of 10 .
2. (12pts) Find integers x, y, z such that $77 x+91 y+143 z=1$.

Solution: Applying the Euclidean algorithm to the pair $(11,13)$, it can be found that $6 \cdot 11-5 \cdot 13=1$. Thus $6 \cdot 77-5 \cdot 91=7$. Applying the Euclidean algorithm to the pair $(7,143)$, it can be found that $41 \cdot 7-2 \cdot 143=1$. Therefore $41(6 \cdot 77-5 \cdot 91)-2 \cdot 143=1$. Thus we can choose $x=246, y=-205$ and $z=-2$.
3. (16pts) Define $f(n)=\operatorname{gcd}(n, 200)$ and $F(n)=\sum_{d \mid n} f(d)$.
(a) Show that f is multiplicative.

Solution: Let $n=n_{1} n_{2}$ with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. It follows that $\operatorname{gcd}(n, 200)=\operatorname{gcd}\left(n_{1}, 200\right) \operatorname{gcd}\left(n_{2}, 200\right)$. Thus $f(n)=f\left(n_{1}\right) f\left(n_{2}\right)$.
(b) Is F multiplicative? Compute $F(9000)$.

Solution: Since f is multiplicative, so is F. We have $F(9000)=F\left(2^{3}\right) F\left(3^{2}\right) F\left(5^{3}\right)$. Thus $F(9000)=(1+2+4+8)(1+1+1)(1+5+25+25)$.
(c) If $N=10^{k}+1$ for some integer $k \geq 1$, then show that $\sum_{d \mid N} \mu(d) F\left(\frac{N}{d}\right)=1$.

Solution: By Mobius inversion formula the sum is equal to $f(N)$. It is easy to see that $f(N)=1$ since N is not divisible by 2 and 5 .
4. (12pts) Let $n=p q$ where p and q are twin primes, i.e. $|p-q|=2$.
(a) Show that there exists an integer r which is a primitive root of both p and q.

Solution: Let r_{1} be a primitive root of p and r_{2} be a primitive root of q. By Chinese remainder theorem, there exists an integer r such that $r \equiv r_{1}(\bmod p)$ and $r \equiv r_{2}$ $(\bmod q)$.
(b) Show that the order of r modulo n is $\phi(n) / 2$.

Solution: Since p and q are twin primes, they are congruent to 1 and 3 modulo 4 respectively without loss of generality. Thus $\operatorname{gcd}(p-1, q-1)=2$ and as a result $\operatorname{lcm}(p-1, q-1)=(p-1)(q-1) / 2=\phi(n) / 2$. It follows that $r^{\phi(n) / 2} \equiv 1(\bmod n)$. We also need to see that $k=\phi(n) / 2$ is the smallest exponent so that $r^{k} \equiv 1(\bmod n)$. Since $r^{k} \equiv 1(\bmod n)$, we have $r^{k} \equiv 1(\bmod p)$ as well. Thus $p-1$ divides k. Similarly $q-1$ divides k. As a result $\operatorname{lcm}(p-1, q-1)$ divides k. This finishes the proof.
5. (12pts) Consider the integer $N=n^{4}+n^{3}+n^{2}+n+1$ with $n \geq 1$. If p is a prime divisor of N, then show that $p=5$ or $p \equiv 1(\bmod 10)$.

Solution: Let p be a prime divisor of N. Then $N \equiv 0(\bmod p)$. It follows that $n^{5}-1 \equiv 0$ $(\bmod p)$. The order of n modulo p can be either 1 or 5 . The first case is possible only if $p=5$. If p is not 5 , then $5 \mid \phi(p)=p-1$. Thus p is of the form $5 k+1$. Since p is prime k must be even and we have $p \equiv 1(\bmod 10)$.
6. (12pts) Let $p \geq 5$ be an odd prime and let r be a primitive root of p.
(a) Show that r^{2} is not a primitive root of p.

Solution: Since p is an odd prime $(p-1) / 2$ is an integer. It follows that $\left(r^{2}\right)^{(p-1) / 2} \equiv 1$ $(\bmod p)$. Thus the order of r^{2} is less than or equal to $\phi(p) / 2=(p-1) / 2$. Thus r^{2} is not a primitive root of p.
(b) Show that r^{3} is a primitive root of p if and only if $p \equiv 2(\bmod 3)$.

Solution: The order of r^{3} modulo p is equal to $\phi(p) / \operatorname{gcd}(\phi(p), 3)$. This order is equal to $\phi(p)$ if and only if $\operatorname{gcd}(p-1,3)=1$. This is possible if and only if $p \equiv 2(\bmod 3)$
7. (12pts) Let $p \geq 7$ be a prime. Note that $p=20 q+r$ for some $0 \leq r<20$ by the division algorithm. Show that the equation $x^{2}+5 \equiv 0(\bmod p)$ has a solution if and only if $0<r<10$.

Solution: Recall that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$. We also have $\left(\frac{5}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 5)$ by the quadratic reciprocity law. Combining these facts together by Chinese remainder theorem, we see that $\left(\frac{-5}{p}\right)=1$ if and only if $r \equiv 1,3,7,9(\bmod 20)$. This finishes the proof.

