

Question 1. (25 point) For each of the following statements, determine whether it is true or false. Justify your answer briefly.
(a) An operator T and its adjoint T^{*} have the same eigenvectors.
(b) Let T be an invertible linear operator on a finite dimensional inner product space. Then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
(c) Let T be an orthogonal operator on a finite dimensional real inner product space. Then T is diagonalizable.
(d) Let $V=\mathbb{R}^{2}$ with the standard inner product. The orthogonal projection from V onto $W=\operatorname{span}(\{(1,1)\})$ is given by $T(a, b)=(a+b, a+b)$ for all $(a, b) \in V$.

Question 2. (15 point) Let $V=\mathbb{C}^{2}$ be the complex vector space with the standard inner product. Recall that $L_{M}: V \rightarrow V$ is given by $L_{M}(x)=M x$. Set

$$
A=\left[\begin{array}{ll}
i & i \\
i & i
\end{array}\right], B=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], C=\left[\begin{array}{ll}
1 & i \\
i & 0
\end{array}\right], D=\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right], E=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Place the operators $L_{A}, L_{B}, L_{C}, L_{D}, L_{E}$ in the correct region of the Venn diagram below.

Question 3. (10 point) Let $V=P_{1}(\mathbb{R})$ with $\langle f, g\rangle=\int_{0}^{2} f(t) g(t) d t$. Let $T: V \rightarrow V$ be the linear operator defined by $T(a+b x)=b$. Determine $T^{*}(c+d x)$.

Question 4. (25 point) Let V be a finite dimensional inner product space, and let W be a proper subspace of V.
(a) State the definition of W^{\perp}. Prove that W^{\perp} is a subspace of V.
(b) Let $x \in V \backslash W$. Prove that there exists $y \in W^{\perp}$ such that $\langle x, y\rangle \neq 0$.
(c) Show that $\left(W^{\perp}\right)^{\perp}=W$.

Question 5. (25 point) For the matrix A below, find an orthogonal matrix Q such that $D=Q^{t} A Q$ is a diagonal matrix. You are given that $\operatorname{det}(A-t I)=-(t-2)^{2}(t-5)$.

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

