\left.| M E T U - Department of Mathematics | | | |
| :--- | :--- | :--- | :--- |
| Math 262 - Linear Algebra II | | | |$\right]$

Question 1. (25 point) For each of the following statements, determine whether it is true or false. Justify your answer briefly.
(a) Let T be a linear map. The scalar zero is never an eigenvalue of T.
(b) Let V be a finite dimensional vector space and let W_{1} be any subspace of V. Then there exists a subspace W_{2} of V such that $V=W_{1} \oplus W_{2}$.
(c) Let $A \in M_{n \times n}(\mathbb{R})$ be a square matrix. Then the dimension of $\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)$ is less than or equal to n.
(d) The formula $\langle A, B\rangle=\operatorname{tr}(A+B)$ defines an inner product on $M_{2 \times 2}(\mathbb{R})$.

Question 2. (25 point) Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard ordered basis for $P_{2}(\mathbb{R})$. Let T be the linear operator on $P_{2}(\mathbb{R})$ defined by $T(f(x))=2 f^{\prime}(x)+f(1) x$.
(a) Find $[T]_{\beta}$.
(b) Find the characteristic polynomial of T.
(c) Find a basis for each eigenspace.
(d) Find a basis α of V such that $[T]_{\alpha}$ is a diagonal matrix.

Question 3. (25 point) Let $V=M_{2 \times 2}(\mathbb{R})$. Consider the linear map $T: V \rightarrow V$ given by the formula

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
3 b & 2 a+b \\
4 d-c & 5 c
\end{array}\right] .
$$

(a) Let W be the T-cyclic space generated by the vector $E^{11}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Find a basis for the subspace W.
(b) Find the characteristic polynomial of the restricted map $\left.T\right|_{W}$.
(c) Let U be the T-cyclic space generated by the vector $E^{22}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Find a basis for the subspace U.
(d) Find the characteristic polynomial of the restricted map $\left.T\right|_{U}$.
(e) Explain briefly why V is the direct sum of W and U. Find the characteristic polynomial of T by using the parts (b) and (d).

Question 4. (25 point) Let $V=R^{3}$ be the inner product space with the standard inner product
(a) Apply the Gram-Schmidt process to $S=\{(1,2,2),(1,0,0),(0,1,0)\}$.
(b) Find an orthonormal basis β of V that contains $(1 / 3,2 / 3,2 / 3)$.
(c) Compute the Fourier coefficients of $w=(2,6,2)$ relative to β. Express w as a linear combination of vectors in β.

