(D)		M E T U - Department of Mathematics Math 262 - Linear Algebra II				(1)
Spring 2019 Ö. Küçüksakallı				Final May 24, 13:30 120 minutes 4 questions on 4 pages.	Surname: Name: Student No: Signature:	
Page 1	Page 2	${ }^{\text {Page } 3}$	${ }^{\text {Page } 4}$	Total		

Question 1. (25 point) For each of the following statements, determine whether it is true or false. Justify your answer briefly.
(a) There exists a matrix $A \in M_{3 \times 3}(\mathbb{C})$ such that $A^{3}=I$ but $A^{2} \neq I$.
(b) A linear operator is diagonalizable if and only if its minimal polynomial splits.
(c) Every orthonormal set is linearly independent.
(d) A generalized eigenvector of T is always an eigenvector of T.

Question 2. (25 point) Let $S=\left\{e^{x}, x e^{x}, x^{2} e^{x}, x^{3} e^{x}\right\}$ be a subset of real valued functions. Define $V=\operatorname{span}(S)$. Let $T: V \rightarrow V$ be the linear operator given by $T(f)=f^{\prime}$.
(a) Find the minimal polynomial of T.
(b) Find a Jordan canonical basis β for V. Determine $[T]_{\beta}$.
(c) Find a rational canonical basis γ for V. Determine $[T]_{\gamma}$.

Question 3. (25 point) Let $V=P_{2}(\mathbb{R})$. Define $H(f, g)=\int_{-2}^{2} f(t) g(t) d t$.
(a) Is H a bilinear form on V ? Explain briefly.
(b) Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard basis for V. Find $\psi_{\beta}(H)$.
(c) Find a basis γ for V such that $\psi_{\gamma}(H)$ is a diagonal matrix.

Question 4. (25 point) Let $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(a) Find an invertible matrix Q such that $Q^{-1} A Q=B$
(b) The direct approach requires 2018 matrix multiplications to compute A^{2019}. Use the previous part, to express A^{2019} as a product of at most 3 matrices.

