METU - Department of Mathematics Math 261 - Linear Algebra I												
Ö.	Fall 20 Küçük)18 sakallı			Midterm 2 December 11, 100 minutes 4 questions on 4	17:50 5 pages.	Surname: Name: Student No: Signature:					
1	2	3	4			Total						

Question 1. (25 point) Let V be a finite dimensional vector space and let $T: V \to V$ be a linear transformation. Prove or disprove the following statements:

(a) If $T^2 = 0$ then $\operatorname{Im}(T) \subseteq \operatorname{Ker}(T)$.

Solution: True. Pick $v \in \text{Im}(T)$. Then there exists $u \in V$ such that T(u) = v. Since $T^2 = 0$, we have $T^2(u) = T(T(u)) = T(v) = 0$. Thus $v \in \text{Ker}(T)$.

(b) If $T^2 = I_V$ and $v \in V$ then there exists $w \in V$ such that T(w) = v.

Solution: True. The map is T invertible because $T \circ T = I_V$. Note that T^{-1} is the map T itself. Therefore, T is onto. This means that for each $v \in V$, there exists $w \in V$ such that T(w) = v. Alternatively, given $v \in V$, set w = T(v). Then $v = T^2(v) = T(T(v)) = T(w)$.

(c) If $T^2 = T$ and $T \neq I_V$ then $\operatorname{Ker}(T) \neq \{0\}$.

Solution: True. If $T \neq I_V$ then there exists $v \in V$ such that $T(v) \neq v$. Consider the nonzero vector w = T(v) - v. We have $T(w) = T(T(v) - v) = T^2(v) - T(v)$. Using $T^2 = T$, we find that T(w) = 0. Thus $w \in \text{Ker}(T)$. We conclude that $\text{Ker}(T) \neq \{0\}$.

Question 2. (25 point) Let $\beta = \{e_1, e_2, e_3\}$ be the standard ordered basis of $V = \mathbb{R}^3$. Let $\gamma = \{u_1, u_2, u_3\}$ be another ordered basis of V with $u_1 = (1, 1, 1), u_2 = (1, 1, 0)$ and $u_3 = (0, 1, 1)$. Let $T : V \to V$ be the linear map such that $T(u_1) = e_1, T(u_2) = e_2$ and $T(u_3) = e_1 - e_2$.

(a) Find the rank and nullity of T. Give a basis for Ker(T) and Im(T).

Solution: We have $\text{Im}(T) = \text{span}(\{e_1, e_2, e_1 - e_2\}) = \text{span}(\{e_1, e_2\})$. The set $\{e_1, e_2\}$ is a basis for the image since it is a subset of the standard basis. We conclude that the rank of T is 2. On the other hand, the dimension theorem implies that nullity(T) = 3 - 2 = 1. Observe that $T(u_1 - u_2 - u_3) = e_1 - e_2 - (e_1 - e_2) = 0$. It is easy to see that $u_1 - u_2 - u_3 = -e_2$. It follows that $\text{Ker}(T) = \text{span}(\{e_2\})$.

(b) Compute both $[T]^{\beta}_{\beta}$ and $[T]^{\gamma}_{\gamma}$. Write a relation between $[T]^{\beta}_{\beta}$ and $[T]^{\gamma}_{\gamma}$ which includes a change of coordinate matrix and its inverse.

Solution: The conditions $T(u_1) = e_1, T(u_2) = e_2$ and $T(u_3) = e_1 - e_2$ uniquely determine the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ since γ is a basis. However, these conditions are not suitable to directly compute $[T]^{\beta}_{\beta}$ and $[T]^{\gamma}_{\gamma}$.

In order to represent T with respect to the ordered basis γ , we shall write the vectors $T(u_i)$ in terms of the vectors u_i . We observe that

$$T(u_1) = e_1 = u_1 - u_3, T(u_2) = e_2 = -u_1 + u_2 + u_3, T(u_3) = e_1 - e_2 = 2u_1 - u_2 - 2u_3,$$
$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ -1 & 1 & -2 \end{bmatrix}.$$

In order to represent T with respect to the standard ordered basis, we shall write the vectors $T(e_1)$ in terms of the vectors e_i . Note that

$$T(e_1) = T(u_1 - u_3) = e_1 - (e_1 - e_2) = e_2,$$

$$T(e_2) = T(-u_1 + u_2 + u_3) = \dots = 0,$$

$$T(e_3) = T(u_1 - u_2) = e_1 - e_2,$$

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The vectors u_i can be written in terms of e_i naturally. This gives us the change of coordinate matrix $Q = [I_V]_{\gamma}^{\beta}$. Its inverse, namely $Q^{-1} = [I_V]_{\beta}^{\gamma}$ can be found by expressing e_i in terms of the vectors u_i . We observe that $e_1 = u_1 - u_3, e_2 = -u_1 + u_2 + u_3$ and $e_3 = u_1 - u_2$. Now, we have

$$Q = [I_V]_{\gamma}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } Q^{-1} = [I_V]_{\beta}^{\gamma} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

Finally, we recall that the equality $[T]^{\gamma}_{\gamma} = Q^{-1}[T]^{\beta}_{\beta}Q$ holds. One can verify the computations above by performing the two matrix multiplications on the right hand side of this equation.

Question 3. (25 point) You are given that $\beta = \{(1,1,0), (2,1,0), (1,0,1)\}$ is a basis for $V = \mathbb{R}^3$. Suppose that β is an ordered basis.

(a) What is the definition of the dual space V^* ? What can you say about its dimension? Does it have a natural basis?

Solution: By definition $V^* = \mathcal{L}(V, \mathbb{R})$. This is the set of all linear transformations from V to \mathbb{R} and it has a vector space structure. It is of the same dimension as V, i.e. $\dim(V^*) = \dim(V) = 3$. Once a basis β is fixed for V, the set of coordinate functions β^* forms a basis for V^* .

(b) Let f_i be the *i*th coordinate function with respect to β . If $v = (2, 6, 1) \in \mathbb{R}^3$ then show that $f_1(v) = 11, f_2(v) = -5$ and $f_3(v) = 1$.

Solution: Set $v_1 = (1, 1, 0), v_2 = (2, 1, 0)$ and $v_3 = (1, 0, 1)$. We have $v = (2, 6, 1) = 11v_1 - 5v_2 + v_3$. Thus $f_1(v) = 11, f_2(v) = -5$ and $f_3(v) = 1$.

(c)Find explicit formulas for the linear functionals f_1, f_2 and f_3 .

Solution: The coordinate functions satisfy the identity $f_i(v_j) = \delta_{ij}$ where δ is the Kronecker's delta function. Note that $f_1(1, 1, 0) = 1$, $f_2(1, 1, 0) = 0$ and $f_3(1, 1, 0) = 0$. Similarly, we have $f_1(2, 1, 0) = 0$, $f_2(2, 1, 0) = 1$ and $f_3(2, 1, 0)$. Finally, we have $f_1(1, 0, 1) = 0$, $f_3(1, 0, 1) = 0$ and $f_3(1, 0, 1) = 1$. Suppose that $f_i(x, y, z) = a_i x + b_i y + c_i z$ for each i. We can summarize all this information as follows:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that the columns of the matrix A consist of the vectors v_j . We need to find its inverse in order to determine the coordinate functions f_i . Applying elementary row operations $R_1 - R_3$ and $R_1 - R_2$, we obtain

$$\begin{bmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & -1 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & | & 1 & -1 & -1 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Then we apply $R_2 - R_1$ and $R_1 \leftrightarrow R_2$ and obtain

$$\begin{bmatrix} 0 & 1 & 0 & | & 1 & -1 & -1 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & | & 1 & -1 & -1 \\ 1 & 0 & 0 & | & -1 & 2 & 1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -1 & 2 & 1 \\ 0 & 1 & 0 & | & 1 & -1 & -1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

The inverse matrix A^{-1} includes all the coefficients a_i, b_i and c_i . Thus we have determined the coordinate functions f_i . More precisely, we have $f_1(x, y, z) = -x + 2y + z$, $f_2(x, y, z) = x - y - z$, and $f_3(x, y, z) = z$. Question 4. (25 point) Consider the linear map $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T(f(x)) = (f(0), f(1), f(2)).$$

(a) Show that T is invertible and find the inverse map T^{-1} .

Solution: Consider the standard ordered bases $\beta = \{1, x, x^2\}$ and $\gamma = \{e_1, e_2, e_3\}$ for $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively. We easily find that T(1) = (1, 1, 1), T(x) = (0, 1, 2) and $T(x^2) = (0, 1, 4)$. Thus we have

$$A = [T]^{\gamma}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}.$$

We need to find the inverse of the matrix A. Applying the elementary row operations $R_2 - R_1, R_3 - R_1$ and then $R_3 - 2R_2$ to the augmented matrix $(A|I_3)$, we obtain

ſ	1	0	0	1	0	0		[1	0	0	1	0	0		[1	0	0	1	0	0
	1	1	1	0	1	0	\rightarrow	0	1	1	-1	1	0	\rightarrow	0	1	1	-1	1	0
	. 1	2	4	0	0	1		0	2	4	-1	0	1		0	0	2	1	-2	1

Finally, we apply $\frac{1}{2}R_3$ and $R_2 - R_3$. This gives us

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -1 & 1 & 0 \\ 0 & 0 & 2 & | & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -\frac{3}{2} & 2 & -\frac{1}{2} \\ 0 & 0 & 1 & | & \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$

We have found A^{-1} . Now we are ready to determine T^{-1} . Recall that $A^{-1} = [T^{-1}]^{\beta}_{\gamma}$ and $[T^{-1}(v)]_{\beta} = [T^{-1}]^{\beta}_{\gamma}[v]_{\gamma}$. If $v = (a, b, c) \in \mathbb{R}^3$ then $[v]_{\gamma}$ is the column vector with the same components since γ is the standard ordered basis. Therefore

$$\begin{bmatrix} T^{-1}(v) \end{bmatrix}_{\beta} = \begin{bmatrix} T^{-1} \end{bmatrix}_{\gamma}^{\beta} [v]_{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ -\frac{3}{2}a + 2b - \frac{1}{2}c \\ \frac{1}{2}a - b + \frac{1}{2}c \end{bmatrix}$$

The last term on the right is a coordinate vector with respect to the ordered basis $\beta = \{1, x, x^2\}$. Thus we have

$$T^{-1}(a,b,c) = a \cdot 1 + \left(-\frac{3}{2}a + 2b - \frac{1}{2}c\right)x + \left(\frac{1}{2}a - b + \frac{1}{2}c\right)x^2.$$

(b) Use the computation above to find the element $T^{-1}(2,6,1) = g(x) \in P_2(\mathbb{R})$. Verify that T(g(x)) = (g(0), g(1), g(2)) = (2, 6, 1).

Solution: It is easy to verify that g(0) = 2, g(1) = 6 and g(2) = 1 for the polynomial

$$T^{-1}(2,6,1) = g(x) = 2 + \frac{17}{2}x - \frac{9}{2}x^2.$$