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Question 1. (25 point) Let V be a finite dimensional vector space and let T : V → V
be a linear transformation. Prove or disprove the following statements:

(a) If T 2 = 0 then Im(T ) ⊆ Ker(T ).

Solution: True. Pick v ∈ Im(T ). Then there exists u ∈ V such that T (u) = v. Since
T 2 = 0, we have T 2(u) = T (T (u)) = T (v) = 0. Thus v ∈ Ker(T ).

(b) If T 2 = IV and v ∈ V then there exists w ∈ V such that T (w) = v.

Solution: True. The map is T invertible because T ◦T = IV . Note that T−1 is the map T
itself. Therefore, T is onto. This means that for each v ∈ V , there exists w ∈ V such that
T (w) = v. Alternatively, given v ∈ V , set w = T (v). Then v = T 2(v) = T (T (v)) = T (w).

(c) If T 2 = T and T 6= IV then Ker(T ) 6= {0}.

Solution: True. If T 6= IV then there exists v ∈ V such that T (v) 6= v. Consider the
nonzero vector w = T (v) − v. We have T (w) = T (T (v) − v) = T 2(v) − T (v). Using
T 2 = T , we find that T (w) = 0. Thus w ∈ Ker(T ). We conclude that Ker(T ) 6= {0}.



Question 2. (25 point) Let β = {e1, e2, e3} be the standard ordered basis of V = R3.
Let γ = {u1, u2, u3} be another ordered basis of V with u1 = (1, 1, 1), u2 = (1, 1, 0) and
u3 = (0, 1, 1). Let T : V → V be the linear map such that T (u1) = e1, T (u2) = e2 and
T (u3) = e1 − e2.

(a) Find the rank and nullity of T . Give a basis for Ker(T ) and Im(T ).

Solution: We have Im(T ) = span({e1, e2, e1 − e2}) = span({e1, e2}). The set {e1, e2} is a
basis for the image since it is a subset of the standard basis. We conclude that the rank
of T is 2. On the other hand, the dimension theorem implies that nullity(T ) = 3− 2 = 1.
Observe that T (u1−u2−u3) = e1−e2−(e1−e2) = 0. It is easy to see that u1−u2−u3 =
−e2. It follows that Ker(T ) = span({e2}).

(b) Compute both [T ]ββ and [T ]γγ. Write a relation between [T ]ββ and [T ]γγ which includes
a change of coordinate matrix and its inverse.

Solution: The conditions T (u1) = e1, T (u2) = e2 and T (u3) = e1− e2 uniquely determine
the map T : R3 → R3 since γ is a basis. However, these conditions are not suitable to
directly compute [T ]ββ and [T ]γγ.

In order to represent T with respect to the ordered basis γ, we shall write the vectors
T (ui) in terms of the vectors ui. We observe that

T (u1) = e1 = u1 − u3,
T (u2) = e2 = −u1 + u2 + u3,

T (u3) = e1 − e2 = 2u1 − u2 − 2u3,

[T ]γγ =

 1 −1 2
0 1 −1
−1 1 −2

.

In order to represent T with respect to the standard ordered basis, we shall write the
vectors T (e1) in terms of the vectors ei. Note that

T (e1) = T (u1 − u3) = e1 − (e1 − e2) = e2,

T (e2) = T (−u1 + u2 + u3) = . . . = 0,

T (e3) = T (u1 − u2) = e1 − e2,

[T ]ββ =

 0 0 1
1 0 −1
0 0 0

 .
The vectors ui can be written in terms of ei naturally. This gives us the change of
coordinate matrix Q = [IV ]βγ . Its inverse, namely Q−1 = [IV ]γβ can be found by expressing
ei in terms of the vectors ui. We observe that e1 = u1 − u3, e2 = −u1 + u2 + u3 and
e3 = u1 − u2. Now, we have

Q = [IV ]βγ =

 1 1 0
1 1 1
1 0 1

 and Q−1 = [IV ]γβ =

 1 −1 1
0 1 −1
−1 1 0


Finally, we recall that the equality [T ]γγ = Q−1[T ]ββQ holds. One can verify the computa-
tions above by performing the two matrix multiplications on the right hand side of this
equation.



Question 3. (25 point) You are given that β = {(1, 1, 0), (2, 1, 0), (1, 0, 1)} is a basis
for V = R3. Suppose that β is an ordered basis.

(a) What is the definition of the dual space V ∗? What can you say about its dimension?
Does it have a natural basis?

Solution: By definition V ∗ = L(V,R). This is the set of all linear transformations from
V to R and it has a vector space structure. It is of the same dimension as V , i.e.
dim(V ∗) = dim(V ) = 3. Once a basis β is fixed for V , the set of coordinate functions β∗

forms a basis for V ∗.

(b) Let fi be the ith coordinate function with respect to β. If v = (2, 6, 1) ∈ R3 then
show that f1(v) = 11, f2(v) = −5 and f3(v) = 1.

Solution: Set v1 = (1, 1, 0), v2 = (2, 1, 0) and v3 = (1, 0, 1). We have v = (2, 6, 1) =
11v1 − 5v2 + v3. Thus f1(v) = 11, f2(v) = −5 and f3(v) = 1.

(c)Find explicit formulas for the linear functionals f1, f2 and f3.

Solution: The coordinate functions satisfy the identity fi(vj) = δij where δ is the Kro-
necker’s delta function. Note that f1(1, 1, 0) = 1, f2(1, 1, 0) = 0 and f3(1, 1, 0) = 0. Simi-
larly, we have f1(2, 1, 0) = 0, f2(2, 1, 0) = 1 and f3(2, 1, 0). Finally, we have f1(1, 0, 1) =
0, f3(1, 0, 1) = 0 and f3(1, 0, 1) = 1. Suppose that fi(x, y, z) = aix + biy + ciz for each i.
We can summarize all this information as follows: a1 b1 c1

a2 b2 c2
a3 b3 c3

 1 2 1
1 1 0
0 0 1


︸ ︷︷ ︸

A

=

 1 0 0
0 1 0
0 0 1



Note that the columns of the matrix A consist of the vectors vj. We need to find its inverse
in order to determine the coordinate functions fi. Applying elementary row operations
R1 −R3 and R1 −R2, we obtain 1 2 1 1 0 0

1 1 0 0 1 0
0 0 1 0 0 1

→
 1 2 0 1 0 −1

1 1 0 0 1 0
0 0 1 0 0 1

→
 0 1 0 1 −1 −1

1 1 0 0 1 0
0 0 1 0 0 1


Then we apply R2 −R1 and R1 ↔ R2 and obtain 0 1 0 1 −1 −1

1 1 0 0 1 0
0 0 1 0 0 1

→
 0 1 0 1 −1 −1

1 0 0 −1 2 1
0 0 1 0 0 1

→
 1 0 0 −1 2 1

0 1 0 1 −1 −1
0 0 1 0 0 1


The inverse matrix A−1 includes all the coefficients ai, bi and ci. Thus we have determined
the coordinate functions fi. More precisely, we have f1(x, y, z) = −x+2y+z, f2(x, y, z) =
x− y − z, and f3(x, y, z) = z.



Question 4. (25 point) Consider the linear map T : P2(R)→ R3 defined by

T (f(x)) = (f(0), f(1), f(2)) .

(a) Show that T is invertible and find the inverse map T−1.

Solution: Consider the standard ordered bases β = {1, x, x2} and γ = {e1, e2, e3} for
P2(R) and R3, respectively. We easily find that T (1) = (1, 1, 1), T (x) = (0, 1, 2) and
T (x2) = (0, 1, 4). Thus we have

A = [T ]γβ =

 1 0 0
1 1 1
1 2 4

 .
We need to find the inverse of the matrix A. Applying the elementary row operations
R2 −R1, R3 −R1 and then R3 − 2R2 to the augmented matrix (A|I3), we obtain 1 0 0 1 0 0

1 1 1 0 1 0
1 2 4 0 0 1

→
 1 0 0 1 0 0

0 1 1 −1 1 0
0 2 4 −1 0 1

→
 1 0 0 1 0 0

0 1 1 −1 1 0
0 0 2 1 −2 1


Finally, we apply 1

2
R3 and R2 −R3. This gives us 1 0 0 1 0 0

0 1 1 −1 1 0
0 0 2 1 −2 1

→
 1 0 0 1 0 0

0 1 1 −1 1 0
0 0 1 1

2
−1 1

2

→
 1 0 0 1 0 0

0 1 0 −3
2

2 −1
2

0 0 1 1
2
−1 1

2


We have found A−1. Now we are ready to determine T−1. Recall that A−1 = [T−1]βγ and
[T−1(v)]β = [T−1]βγ [v]γ. If v = (a, b, c) ∈ R3 then [v]γ is the column vector with the same
components since γ is the standard ordered basis. Therefore

[
T−1(v)

]
β

= [T−1]βγ [v]γ =

 1 0 0
−3

2
2 −1

2
1
2
−1 1

2

 a
b
c

 =

 a

−3
2
a+ 2b− 1

2
c

1
2
a− b+ 1

2
c


The last term on the right is a coordinate vector with respect to the ordered basis β =
{1, x, x2}. Thus we have

T−1(a, b, c) = a · 1 +

(
−3

2
a+ 2b− 1

2
c

)
x+

(
1

2
a− b+

1

2
c

)
x2.

(b) Use the computation above to find the element T−1(2, 6, 1) = g(x) ∈ P2(R). Verify
that T (g(x)) = (g(0), g(1), g(2)) = (2, 6, 1).

Solution: It is easy to verify that g(0) = 2, g(1) = 6 and g(2) = 1 for the polynomial

T−1(2, 6, 1) = g(x) = 2 +
17

2
x− 9

2
x2.


