\left.| M E T U - Department of Mathematics | | | |
| :--- | :--- | :--- | :--- |
| Math 261 - Linear Algebra I | | | |$\right]$

Question 1. (25 point) Let V be a finite dimensional vector space and let $T: V \rightarrow V$ be a linear transformation. Prove or disprove the following statements:
(a) If $T^{2}=0$ then $\operatorname{Im}(T) \subseteq \operatorname{Ker}(T)$.

Solution: True. Pick $v \in \operatorname{Im}(T)$. Then there exists $u \in V$ such that $T(u)=v$. Since $T^{2}=0$, we have $T^{2}(u)=T(T(u))=T(v)=0$. Thus $v \in \operatorname{Ker}(T)$.
(b) If $T^{2}=I_{V}$ and $v \in V$ then there exists $w \in V$ such that $T(w)=v$.

Solution: True. The map is T invertible because $T \circ T=I_{V}$. Note that T^{-1} is the map T itself. Therefore, T is onto. This means that for each $v \in V$, there exists $w \in V$ such that $T(w)=v$. Alternatively, given $v \in V$, set $w=T(v)$. Then $v=T^{2}(v)=T(T(v))=T(w)$.
(c) If $T^{2}=T$ and $T \neq I_{V}$ then $\operatorname{Ker}(T) \neq\{0\}$.

Solution: True. If $T \neq I_{V}$ then there exists $v \in V$ such that $T(v) \neq v$. Consider the nonzero vector $w=T(v)-v$. We have $T(w)=T(T(v)-v)=T^{2}(v)-T(v)$. Using $T^{2}=T$, we find that $T(w)=0$. Thus $w \in \operatorname{Ker}(T)$. We conclude that $\operatorname{Ker}(T) \neq\{0\}$.

Question 2. (25 point) Let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard ordered basis of $V=\mathbb{R}^{3}$. Let $\gamma=\left\{u_{1}, u_{2}, u_{3}\right\}$ be another ordered basis of V with $u_{1}=(1,1,1), u_{2}=(1,1,0)$ and $u_{3}=(0,1,1)$. Let $T: V \rightarrow V$ be the linear map such that $T\left(u_{1}\right)=e_{1}, T\left(u_{2}\right)=e_{2}$ and $T\left(u_{3}\right)=e_{1}-e_{2}$.
(a) Find the rank and nullity of T. Give a basis for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

Solution: We have $\operatorname{Im}(T)=\operatorname{span}\left(\left\{e_{1}, e_{2}, e_{1}-e_{2}\right\}\right)=\operatorname{span}\left(\left\{e_{1}, e_{2}\right\}\right)$. The set $\left\{e_{1}, e_{2}\right\}$ is a basis for the image since it is a subset of the standard basis. We conclude that the rank of T is 2 . On the other hand, the dimension theorem implies that nullity $(T)=3-2=1$. Observe that $T\left(u_{1}-u_{2}-u_{3}\right)=e_{1}-e_{2}-\left(e_{1}-e_{2}\right)=0$. It is easy to see that $u_{1}-u_{2}-u_{3}=$ $-e_{2}$. It follows that $\operatorname{Ker}(T)=\operatorname{span}\left(\left\{e_{2}\right\}\right)$.
(b) Compute both $[T]_{\beta}^{\beta}$ and $[T]_{\gamma}^{\gamma}$. Write a relation between $[T]_{\beta}^{\beta}$ and $[T]_{\gamma}^{\gamma}$ which includes a change of coordinate matrix and its inverse.

Solution: The conditions $T\left(u_{1}\right)=e_{1}, T\left(u_{2}\right)=e_{2}$ and $T\left(u_{3}\right)=e_{1}-e_{2}$ uniquely determine the map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ since γ is a basis. However, these conditions are not suitable to directly compute $[T]_{\beta}^{\beta}$ and $[T]_{\gamma}^{\gamma}$.

In order to represent T with respect to the ordered basis γ, we shall write the vectors $T\left(u_{i}\right)$ in terms of the vectors u_{i}. We observe that

$$
\begin{aligned}
& T\left(u_{1}\right)=e_{1}=u_{1}-u_{3}, \\
& T\left(u_{2}\right)=e_{2}=-u_{1}+u_{2}+u_{3}, \\
& T\left(u_{3}\right)=e_{1}-e_{2}=2 u_{1}-u_{2}-2 u_{3},
\end{aligned} \quad[T]_{\gamma}^{\gamma}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -1 \\
-1 & 1 & -2
\end{array}\right]
$$

In order to represent T with respect to the standard ordered basis, we shall write the vectors $T\left(e_{1}\right)$ in terms of the vectors e_{i}. Note that

$$
\begin{aligned}
& T\left(e_{1}\right)=T\left(u_{1}-u_{3}\right)=e_{1}-\left(e_{1}-e_{2}\right)=e_{2} \\
& T\left(e_{2}\right)=T\left(-u_{1}+u_{2}+u_{3}\right)=\ldots=0 \\
& T\left(e_{3}\right)=T\left(u_{1}-u_{2}\right)=e_{1}-e_{2}
\end{aligned}
$$

The vectors u_{i} can be written in terms of e_{i} naturally. This gives us the change of coordinate matrix $Q=\left[I_{V}\right]_{\gamma}^{\beta}$. Its inverse, namely $Q^{-1}=\left[I_{V}\right]_{\beta}^{\gamma}$ can be found by expressing e_{i} in terms of the vectors u_{i}. We observe that $e_{1}=u_{1}-u_{3}, e_{2}=-u_{1}+u_{2}+u_{3}$ and $e_{3}=u_{1}-u_{2}$. Now, we have

$$
Q=\left[I_{V}\right]_{\gamma}^{\beta}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad Q^{-1}=\left[I_{V}\right]_{\beta}^{\gamma}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

Finally, we recall that the equality $[T]_{\gamma}^{\gamma}=Q^{-1}[T]_{\beta}^{\beta} Q$ holds. One can verify the computations above by performing the two matrix multiplications on the right hand side of this equation.

Question 3. (25 point) You are given that $\beta=\{(1,1,0),(2,1,0),(1,0,1)\}$ is a basis for $V=\mathbb{R}^{3}$. Suppose that β is an ordered basis.
(a) What is the definition of the dual space V^{*} ? What can you say about its dimension? Does it have a natural basis?

Solution: By definition $V^{*}=\mathcal{L}(V, \mathbb{R})$. This is the set of all linear transformations from V to \mathbb{R} and it has a vector space structure. It is of the same dimension as V, i.e. $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)=3$. Once a basis β is fixed for V, the set of coordinate functions β^{*} forms a basis for V^{*}.
(b) Let f_{i} be the i th coordinate function with respect to β. If $v=(2,6,1) \in \mathbb{R}^{3}$ then show that $f_{1}(v)=11, f_{2}(v)=-5$ and $f_{3}(v)=1$.

Solution: Set $v_{1}=(1,1,0), v_{2}=(2,1,0)$ and $v_{3}=(1,0,1)$. We have $v=(2,6,1)=$ $11 v_{1}-5 v_{2}+v_{3}$. Thus $f_{1}(v)=11, f_{2}(v)=-5$ and $f_{3}(v)=1$.
(c)Find explicit formulas for the linear functionals f_{1}, f_{2} and f_{3}.

Solution: The coordinate functions satisfy the identity $f_{i}\left(v_{j}\right)=\delta_{i j}$ where δ is the Kronecker's delta function. Note that $f_{1}(1,1,0)=1, f_{2}(1,1,0)=0$ and $f_{3}(1,1,0)=0$. Similarly, we have $f_{1}(2,1,0)=0, f_{2}(2,1,0)=1$ and $f_{3}(2,1,0)$. Finally, we have $f_{1}(1,0,1)=$ $0, f_{3}(1,0,1)=0$ and $f_{3}(1,0,1)=1$. Suppose that $f_{i}(x, y, z)=a_{i} x+b_{i} y+c_{i} z$ for each i. We can summarize all this information as follows:

$$
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \underbrace{\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note that the columns of the matrix A consist of the vectors v_{j}. We need to find its inverse in order to determine the coordinate functions f_{i}. Applying elementary row operations $R_{1}-R_{3}$ and $R_{1}-R_{2}$, we obtain

$$
\left[\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|llc}
1 & 2 & 0 & 1 & 0 & -1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lcc}
0 & 1 & 0 & 1 & -1 & -1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Then we apply $R_{2}-R_{1}$ and $R_{1} \leftrightarrow R_{2}$ and obtain

$$
\left[\begin{array}{ccc|ccc}
0 & 1 & 0 & 1 & -1 & -1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
0 & 1 & 0 & 1 & -1 & -1 \\
1 & 0 & 0 & -1 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 2 & 1 \\
0 & 1 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

The inverse matrix A^{-1} includes all the coefficients a_{i}, b_{i} and c_{i}. Thus we have determined the coordinate functions f_{i}. More precisely, we have $f_{1}(x, y, z)=-x+2 y+z, f_{2}(x, y, z)=$ $x-y-z$, and $f_{3}(x, y, z)=z$.

Question 4. (25 point) Consider the linear map $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by

$$
T(f(x))=(f(0), f(1), f(2))
$$

(a) Show that T is invertible and find the inverse map T^{-1}.

Solution: Consider the standard ordered bases $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\left\{e_{1}, e_{2}, e_{3}\right\}$ for $P_{2}(\mathbb{R})$ and \mathbb{R}^{3}, respectively. We easily find that $T(1)=(1,1,1), T(x)=(0,1,2)$ and $T\left(x^{2}\right)=(0,1,4)$. Thus we have

$$
A=[T]_{\beta}^{\gamma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

We need to find the inverse of the matrix A. Applying the elementary row operations $R_{2}-R_{1}, R_{3}-R_{1}$ and then $R_{3}-2 R_{2}$ to the augmented matrix $\left(A \mid I_{3}\right)$, we obtain

$$
\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 2 & 4 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 2 & 1 & -2 & 1
\end{array}\right]
$$

Finally, we apply $\frac{1}{2} R_{3}$ and $R_{2}-R_{3}$. This gives us

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 2 & 1 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -\frac{3}{2} & 2 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right]
$$

We have found A^{-1}. Now we are ready to determine T^{-1}. Recall that $A^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}$ and $\left[T^{-1}(v)\right]_{\beta}=\left[T^{-1}\right]_{\gamma}^{\beta}[v]_{\gamma}$. If $v=(a, b, c) \in \mathbb{R}^{3}$ then $[v]_{\gamma}$ is the column vector with the same components since γ is the standard ordered basis. Therefore

$$
\left[T^{-1}(v)\right]_{\beta}=\left[T^{-1}\right]_{\gamma}^{\beta}[v]_{\gamma}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3}{2} & 2 & -\frac{1}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a \\
-\frac{3}{2} a+2 b-\frac{1}{2} c \\
\frac{1}{2} a-b+\frac{1}{2} c
\end{array}\right]
$$

The last term on the right is a coordinate vector with respect to the ordered basis $\beta=$ $\left\{1, x, x^{2}\right\}$. Thus we have

$$
T^{-1}(a, b, c)=a \cdot 1+\left(-\frac{3}{2} a+2 b-\frac{1}{2} c\right) x+\left(\frac{1}{2} a-b+\frac{1}{2} c\right) x^{2} .
$$

(b) Use the computation above to find the element $T^{-1}(2,6,1)=g(x) \in P_{2}(\mathbb{R})$. Verify that $T(g(x))=(g(0), g(1), g(2))=(2,6,1)$.

Solution: It is easy to verify that $g(0)=2, g(1)=6$ and $g(2)=1$ for the polynomial

$$
T^{-1}(2,6,1)=g(x)=2+\frac{17}{2} x-\frac{9}{2} x^{2} .
$$

