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Question 1. (25 point) For each of the following statements, determine if it is true or
false. Justify your answer briefly.

(a) The subset S = {(1, 2, 3), (1, 1, 1), (3, 2, 1)} of R3 is linearly dependent.

Solution: True. Set u1 = (1, 2, 3), u2 = (1, 1, 1) and u3 = (3, 2, 1). We have u1−4u2+u3 =
(0, 0, 0).

(b) Subsets of linearly independent sets are linearly independent.

Solution: True. This fact can be referred as the “comparison theorem” for subsets of V .
Let us justify this by its contrapositive. Let S be a subset of L that is linearly dependent.
Then we can find a nontrivial relation between the elements of S. The same relation holds
in L. Thus L is linearly dependent.

(c) If S generates the vector space V , then every vector in V can be written as a linear
combination of vectors in S in only one way.

Solution: False. Consider S = {(1, 0), (0, 1), (1, 1)} which generates R2. Observe that
(1, 1) = (1, 0) + (0, 1). We have expressed (1, 1) in two different ways as a linear combi-
nation of vectors in S.

(d) The subset W = {(x, y) ∈ R2 : x2 = y2} is a subspace of R2.

Solution: False. The subset W is not closed under the vector addition. To see this, note
that (1, 1) and (1,−1) are in W whereas (1, 1) + (1,−1) = (2, 0) is not in W .

(e) Let T : V → W be a linear transformation and let S ⊆ V be a subset. If S is linearly
dependent, then T (S) is linearly dependent.

Solution: True. Suppose that S is linearly dependent, i.e. there exist v1, . . . , vn in
S such that a1v1 + . . . + anvn = 0 with not all ai are zero. Applying T , we obtain
a1T (v1) + . . .+ anT (vn) = 0 with not all ai are zero. Thus T (S) is linearly dependent.



Question 2. (25 point) Let W1 = {(x, y, z) ∈ R3 : x+ 2y + 3z = 0} and let W2 be the
xy-plane in R3.

(a) Show that W1 is a subspace of R3.

Solution: It is easy to check that 1 ·0+2 ·0+3 ·0 = 0. Thus (0, 0, 0) ∈ W1. Let (a1, a2, a3)
and (b1, b2, b3) be elements of W1. We have a1 + 2a2 + 3a3 = 0 and b1 + 2b2 + 3b3 = 0. It
follows that (a1 + b1) + 2(a2 + b2) + 3(a3 + b3) = 0. Thus (a1, a2, a3) + (b1, b2, b3) is in W1,
i.e. W1 is closed under the vector addition. Finally we note that ca1 + 2ca2 + 3ca3 = 0
for any real number c whenever a1 + 2a2 + 3a3 = 0. This means that c(a1, a2, a3) ∈ W1,
i.e. W1 is closed under the scalar multiplication.

(b) Find a basis for W1,W2 and W1 ∩W2.

Solution: Note that u1 = (1, 0,−1/3) and u2 = (0, 1,−2/3) are elements of W1. If
c1u1+c2u2 = 0, then we easily see that c1 = c2 = 0. Thus the set β = {u1, u2} is a linearly
independent subset of W1. We want show that it generates W1, i.e. W1 = Span(β).
Clearly, W1 ⊇ Span(β) because W1 is a subspace and W1 ⊇ β. For the converse, let us
pick an arbitrary element (a1, a2, a3) in W1. Then (a1, a2, a3) = (a1, a2,−a1/3− 2a2/3) =
a1u1 + a2u2. This shows that (a1, a2, a3) ∈ Span(β) and therefore W1 ⊆ Span(β).

A basis for the xy-plane can be chosen to be γ = {(1, 0, 0), (0, 1, 0)}. It is easy to see
that γ is linearly independent and that it generates the xy-plane.

Note that W1 ∩W2 = {(a1, a2, 0) : a1 + 2a2 = 0}. A basis for W1 ∩W2 can be chosen to
be δ = {(1,−1/2, 0)}. It is obvious that δ is linearly independent and that it generates
the subspace W1 ∩W2.

(c) Show that W1 +W2 = R3.

Solution: Obviously W1 + W2 ⊆ R3. For the converse, let us pick an arbitrary ele-
ment (a1, a2, a3) ∈ R3. Note that (a1, a2, a3) = (−3a3, 0, a3) + (a1 + 3a3, a2, 0) with
(−3a3, 0, a3) ∈ W1 and (a1 + 3a3, a2, 0) ∈ W2. This means that W1 +W2 ⊇ R3.

(d) Represent the zero vector of R3 in the form w1 + w2 with w1 ∈ W1 and w2 ∈ W2 in
two different ways.

Solution: Note that (0, 0, 0) = (0, 0, 0)+(0, 0, 0) trivially. As a different representation, we
can consider (0, 0, 0) = (1,−1/2, 0) + (−1, 1/2, 0). It is easy to see that (1,−1/2, 0) ∈ W1

and (−1, 1/2, 0) ∈ W2.



Question 3. (25 point) Let V = P261(R) be the vector space of polynomials with
degree less than or equal to 261. Consider the subset W = {f(x) ∈ V : f(−x) = −f(x)}.

(a) Show that Span({x, x3, . . . , x261}) ⊆ W .

Solution: We start with showing that W is a subspace of V . The zero polynomial 0(x)
is in W since 0(−x) ≡ 0 ≡ −0(x). If f(x) and g(x) are in W , then f(−x) = −f(x)
and g(−x) = −g(x) by the definition of W . Now (f + g)(−x) = f(−x) + g(−x) =
−(f(x) + g(x)) = −(f + g)(x). We conclude that W is closed under the vector addition.
Moreover (cf)(−x) = cf(−x) = −cf(x). This means that W is closed under the scalar
multiplication as well. Thus W is a subspace of V .

We note that x, x3, . . . , x261 are elements of W since each one of these polynomials satisfy
the property f(−x) = −f(x). We have {x, x3, . . . , x261} ⊆ W and W is subspace. This
proves the fact that Span({x, x3, . . . , x261}) ⊆ W .

(b) Show that Span({x, x3, . . . , x261}) ⊇ W .

Solution: Let f(x) be an element of W . Since f(x) is an element of V , for some real
numbers ai, we have

f(x) = a261x
261 + a260x

260 . . .+ a1x+ a0.

We also have f(−x) = −f(x). It follows that f(−x) + f(x) = 0. On the other hand

f(−x) + f(x) = 2a260x
260 + 2a258x

258 + . . .+ 2a2x
2 + 2a0.

From this computation, we see that a2i = 0 for each possible i. It follows that

f(x) = a261x
261 + a259x

259 . . .+ a3x
3 + a1x.

Now it is clear that f(x) is an element of Span({x, x3, . . . , x261}).

(c) Is W a subspace of V ? If yes, then what is the dimension of W?

Solution: We have shown that W is a subspace in the first part (a). Being a subset of
the standard basis for V , the subset {x, x3, . . . , x261} is linearly independent. Moreover
it generates the subspace W by the previous parts (a) and (b). Thus the dimension of
W is the number of elements in {x, x3, . . . , x261}, that is 131.



Question 4. (25 point) Consider the map T : M2×2(R)→ R3 given by the formula

T

([
a b
c d

])
= (a+ b, b+ c, c+ d).

(a) Show that T is linear.

Solution: We need to show T (kA1 + A2) = kT (A1) + T (A2) for arbitrary A1 and A2 ∈
M2×2(R) and k ∈ R. Set

A1 =

[
a1 b1
c1 d1

]
and A2 =

[
a2 b2
c2 d2

]
.

We have

T (kA1 + A2) = T

([
ka1 + a2 kb1 + b2
kc1 + c2 kd1 + d2

])
= (ka1 + a2 + kb1 + b2, kb1 + b2 + kc1 + c2, kc1 + c2 + kd1 + d2)

= k(a1 + b1, b1 + c1, c1 + d1) + (a2 + b2, b2 + c2, c2 + d2)

= kT (A1) + T (A2).

(b) Find generating sets for Ker(T ) and Im(T ).

Solution: Suppose that

T

([
a b
c d

])
= (a+ b, b+ c, c+ d) = (0, 0, 0).

It follows that a = −b = c = −d. From this computation, we see that any element in
Ker(T ) is a scalar multiple of

A0 =

[
1 −1
1 −1

]
.

In other words Ker(T ) =Span({A0}).

The standard basis for M2×2(R) is β = {E11, E12, E21, E22}. The image of T is generated
by T (β) = {T (E11), T (E12), T (E21), T (E22)}. More precisely, we have

Im(T ) = Span ({(1, 0, 0), (1, 1, 0), (0, 1, 1), (0, 0, 1)}) .

(c) Compute the dimensions of Ker(T ) and Im(T ).

Solution: By part (b), we have seen that Ker(T ) is spanned by a single nonzero vector
A0. It follows that the dimension of Ker(T ) is one. By definition, the nullity of T is one.
Dimension Theorem implies that the rank of T is equal to 3 = 4−1. Thus the dimension
of Im(T ) is three.


