\left.| M E T U - Department of Mathematics | | | |
| :--- | :--- | :--- | :--- |
| Math 261 - Linear Algebra I | | | |$\right]$

Question 1. (25 point) For each of the following statements, determine if it is true or false. Justify your answer briefly.
(a) The subset $S=\{(1,2,3),(1,1,1),(3,2,1)\}$ of \mathbb{R}^{3} is linearly dependent.

Solution: True. Set $u_{1}=(1,2,3), u_{2}=(1,1,1)$ and $u_{3}=(3,2,1)$. We have $u_{1}-4 u_{2}+u_{3}=$ $(0,0,0)$.
(b) Subsets of linearly independent sets are linearly independent.

Solution: True. This fact can be referred as the "comparison theorem" for subsets of V. Let us justify this by its contrapositive. Let S be a subset of L that is linearly dependent. Then we can find a nontrivial relation between the elements of S. The same relation holds in L. Thus L is linearly dependent.
(c) If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.

Solution: False. Consider $S=\{(1,0),(0,1),(1,1)\}$ which generates \mathbb{R}^{2}. Observe that $(1,1)=(1,0)+(0,1)$. We have expressed $(1,1)$ in two different ways as a linear combination of vectors in S.
(d) The subset $W=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}=y^{2}\right\}$ is a subspace of \mathbb{R}^{2}.

Solution: False. The subset W is not closed under the vector addition. To see this, note that $(1,1)$ and $(1,-1)$ are in W whereas $(1,1)+(1,-1)=(2,0)$ is not in W.
(e) Let $T: V \rightarrow W$ be a linear transformation and let $S \subseteq V$ be a subset. If S is linearly dependent, then $T(S)$ is linearly dependent.

Solution: True. Suppose that S is linearly dependent, i.e. there exist v_{1}, \ldots, v_{n} in S such that $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$ with not all a_{i} are zero. Applying T, we obtain $a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=0$ with not all a_{i} are zero. Thus $T(S)$ is linearly dependent.

Question 2. (25 point) Let $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y+3 z=0\right\}$ and let W_{2} be the $x y$-plane in \mathbb{R}^{3}.
(a) Show that W_{1} is a subspace of \mathbb{R}^{3}.

Solution: It is easy to check that $1 \cdot 0+2 \cdot 0+3 \cdot 0=0$. Thus $(0,0,0) \in W_{1}$. Let $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ be elements of W_{1}. We have $a_{1}+2 a_{2}+3 a_{3}=0$ and $b_{1}+2 b_{2}+3 b_{3}=0$. It follows that $\left(a_{1}+b_{1}\right)+2\left(a_{2}+b_{2}\right)+3\left(a_{3}+b_{3}\right)=0$. Thus $\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right)$ is in W_{1}, i.e. W_{1} is closed under the vector addition. Finally we note that $c a_{1}+2 c a_{2}+3 c a_{3}=0$ for any real number c whenever $a_{1}+2 a_{2}+3 a_{3}=0$. This means that $c\left(a_{1}, a_{2}, a_{3}\right) \in W_{1}$, i.e. W_{1} is closed under the scalar multiplication.
(b) Find a basis for W_{1}, W_{2} and $W_{1} \cap W_{2}$.

Solution: Note that $u_{1}=(1,0,-1 / 3)$ and $u_{2}=(0,1,-2 / 3)$ are elements of W_{1}. If $c_{1} u_{1}+c_{2} u_{2}=0$, then we easily see that $c_{1}=c_{2}=0$. Thus the set $\beta=\left\{u_{1}, u_{2}\right\}$ is a linearly independent subset of W_{1}. We want show that it generates W_{1}, i.e. $W_{1}=\operatorname{Span}(\beta)$. Clearly, $W_{1} \supseteq \operatorname{Span}(\beta)$ because W_{1} is a subspace and $W_{1} \supseteq \beta$. For the converse, let us pick an arbitrary element $\left(a_{1}, a_{2}, a_{3}\right)$ in W_{1}. Then $\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2},-a_{1} / 3-2 a_{2} / 3\right)=$ $a_{1} u_{1}+a_{2} u_{2}$. This shows that $\left(a_{1}, a_{2}, a_{3}\right) \in \operatorname{Span}(\beta)$ and therefore $W_{1} \subseteq \operatorname{Span}(\beta)$.

A basis for the $x y$-plane can be chosen to be $\gamma=\{(1,0,0),(0,1,0)\}$. It is easy to see that γ is linearly independent and that it generates the $x y$-plane.

Note that $W_{1} \cap W_{2}=\left\{\left(a_{1}, a_{2}, 0\right): a_{1}+2 a_{2}=0\right\}$. A basis for $W_{1} \cap W_{2}$ can be chosen to be $\delta=\{(1,-1 / 2,0)\}$. It is obvious that δ is linearly independent and that it generates the subspace $W_{1} \cap W_{2}$.
(c) Show that $W_{1}+W_{2}=\mathbb{R}^{3}$.

Solution: Obviously $W_{1}+W_{2} \subseteq \mathbb{R}^{3}$. For the converse, let us pick an arbitrary element $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$. Note that $\left(a_{1}, a_{2}, a_{3}\right)=\left(-3 a_{3}, 0, a_{3}\right)+\left(a_{1}+3 a_{3}, a_{2}, 0\right)$ with $\left(-3 a_{3}, 0, a_{3}\right) \in W_{1}$ and $\left(a_{1}+3 a_{3}, a_{2}, 0\right) \in W_{2}$. This means that $W_{1}+W_{2} \supseteq \mathbb{R}^{3}$.
(d) Represent the zero vector of \mathbb{R}^{3} in the form $w_{1}+w_{2}$ with $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ in two different ways.

Solution: Note that $(0,0,0)=(0,0,0)+(0,0,0)$ trivially. As a different representation, we can consider $(0,0,0)=(1,-1 / 2,0)+(-1,1 / 2,0)$. It is easy to see that $(1,-1 / 2,0) \in W_{1}$ and $(-1,1 / 2,0) \in W_{2}$.

Question 3. (25 point) Let $V=P_{261}(\mathbb{R})$ be the vector space of polynomials with degree less than or equal to 261. Consider the subset $W=\{f(x) \in V: f(-x)=-f(x)\}$.
(a) Show that $\operatorname{Span}\left(\left\{x, x^{3}, \ldots, x^{261}\right\}\right) \subseteq W$.

Solution: We start with showing that W is a subspace of V. The zero polynomial $\mathbf{0}(x)$ is in W since $\mathbf{0}(-x) \equiv 0 \equiv-\mathbf{0}(x)$. If $f(x)$ and $g(x)$ are in W, then $f(-x)=-f(x)$ and $g(-x)=-g(x)$ by the definition of W. Now $(f+g)(-x)=f(-x)+g(-x)=$ $-(f(x)+g(x))=-(f+g)(x)$. We conclude that W is closed under the vector addition. Moreover $(c f)(-x)=c f(-x)=-c f(x)$. This means that W is closed under the scalar multiplication as well. Thus W is a subspace of V.

We note that $x, x^{3}, \ldots, x^{261}$ are elements of W since each one of these polynomials satisfy the property $f(-x)=-f(x)$. We have $\left\{x, x^{3}, \ldots, x^{261}\right\} \subseteq W$ and W is subspace. This proves the fact that $\operatorname{Span}\left(\left\{x, x^{3}, \ldots, x^{261}\right\}\right) \subseteq W$.
(b) Show that $\operatorname{Span}\left(\left\{x, x^{3}, \ldots, x^{261}\right\}\right) \supseteq W$.

Solution: Let $f(x)$ be an element of W. Since $f(x)$ is an element of V, for some real numbers a_{i}, we have

$$
f(x)=a_{261} x^{261}+a_{260} x^{260} \ldots+a_{1} x+a_{0} .
$$

We also have $f(-x)=-f(x)$. It follows that $f(-x)+f(x)=0$. On the other hand

$$
f(-x)+f(x)=2 a_{260} x^{260}+2 a_{258} x^{258}+\ldots+2 a_{2} x^{2}+2 a_{0}
$$

From this computation, we see that $a_{2 i}=0$ for each possible i. It follows that

$$
f(x)=a_{261} x^{261}+a_{259} x^{259} \ldots+a_{3} x^{3}+a_{1} x .
$$

Now it is clear that $f(x)$ is an element of $\operatorname{Span}\left(\left\{x, x^{3}, \ldots, x^{261}\right\}\right)$.
(c) Is W a subspace of V ? If yes, then what is the dimension of W ?

Solution: We have shown that W is a subspace in the first part (a). Being a subset of the standard basis for V, the subset $\left\{x, x^{3}, \ldots, x^{261}\right\}$ is linearly independent. Moreover it generates the subspace W by the previous parts (a) and (b). Thus the dimension of W is the number of elements in $\left\{x, x^{3}, \ldots, x^{261}\right\}$, that is 131 .

Question 4. (25 point) Consider the map $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ given by the formula

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b, b+c, c+d)
$$

(a) Show that T is linear.

Solution: We need to show $T\left(k A_{1}+A_{2}\right)=k T\left(A_{1}\right)+T\left(A_{2}\right)$ for arbitrary A_{1} and $A_{2} \in$ $M_{2 \times 2}(\mathbb{R})$ and $k \in \mathbb{R}$. Set

$$
A_{1}=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right] .
$$

We have

$$
\begin{aligned}
T\left(k A_{1}+A_{2}\right) & =T\left(\left[\begin{array}{cc}
k a_{1}+a_{2} & k b_{1}+b_{2} \\
k c_{1}+c_{2} & k d_{1}+d_{2}
\end{array}\right]\right) \\
& =\left(k a_{1}+a_{2}+k b_{1}+b_{2}, k b_{1}+b_{2}+k c_{1}+c_{2}, k c_{1}+c_{2}+k d_{1}+d_{2}\right) \\
& =k\left(a_{1}+b_{1}, b_{1}+c_{1}, c_{1}+d_{1}\right)+\left(a_{2}+b_{2}, b_{2}+c_{2}, c_{2}+d_{2}\right) \\
& =k T\left(A_{1}\right)+T\left(A_{2}\right) .
\end{aligned}
$$

(b) Find generating sets for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

Solution: Suppose that

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+b, b+c, c+d)=(0,0,0)
$$

It follows that $a=-b=c=-d$. From this computation, we see that any element in $\operatorname{Ker}(T)$ is a scalar multiple of

$$
A_{0}=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] .
$$

In other words $\operatorname{Ker}(T)=\operatorname{Span}\left(\left\{A_{0}\right\}\right)$.

The standard basis for $M_{2 \times 2}(\mathbb{R})$ is $\beta=\left\{E^{11}, E^{12}, E^{21}, E^{22}\right\}$. The image of T is generated by $T(\beta)=\left\{T\left(E^{11}\right), T\left(E^{12}\right), T\left(E^{21}\right), T\left(E^{22}\right)\right\}$. More precisely, we have

$$
\operatorname{Im}(T)=\operatorname{Span}(\{(1,0,0),(1,1,0),(0,1,1),(0,0,1)\})
$$

(c) Compute the dimensions of $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

Solution: By part (b), we have seen that $\operatorname{Ker}(T)$ is spanned by a single nonzero vector A_{0}. It follows that the dimension of $\operatorname{Ker}(T)$ is one. By definition, the nullity of T is one. Dimension Theorem implies that the rank of T is equal to $3=4-1$. Thus the dimension of $\operatorname{Im}(T)$ is three.

