\left.| M E T U - Department of Mathematics | | | | |
| :--- | :--- | :--- | :--- | :---: |
| Math 261 - Linear Algebra I | | | | |$\right]$

Question 1. (25 point) For each of the following statements, determine whether it is true or false. Justify your answer briefly.
(a) Consider $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y\right.$ or $\left.y=z\right\}$. The set W is a subspace of \mathbb{R}^{3} and $\beta=\{(1,1,0),(0,1,1)\}$ is a basis for W.

Solution: False. The set W is not a subspace of \mathbb{R}^{3} because $(1,1,0)+(0,1,1)=(1,2,1)$ is not an element of W.
(b) Let V and W be vector spaces. Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.

Solution: False. Pick $x_{1}=0 \in V$ and pick a nonzero vector $y_{1} \in W$. Then there exist no linear transformation T such that $T\left(x_{1}\right)=y_{1}$.
(c) For each $A \in M_{n \times n}(\mathbb{R})$ and $k \in \mathbb{R}$, we have $\operatorname{det}(k A)=k \operatorname{det}(A)$.

Solution: False. If $A=I_{n}$, then $\operatorname{det}\left(k I_{n}\right)=k^{n} \operatorname{det}\left(I_{n}\right)$. The above equality is false if $k \neq 0$ and $n \geq 2$.
(d) If A is an invertible matrix such that $A^{11}=A^{44}$, then $\operatorname{det}(A)=1$.

Solution: True. If A is invertible, then $\operatorname{det}(A)$ is nonzero. Moreover $\operatorname{det}\left(A^{n}\right)=\operatorname{det}(A)^{n}$ for each positive integer n. Thus $\operatorname{det}(A)^{33}=1$. It follows that $\operatorname{det}(A)=1$ since $\operatorname{det}(A)$ is a real number.
(e) The system $\left\{\begin{array}{r}x_{1}+2 x_{2}+3 x_{3}=2 \\ 3 x_{1}+2 x_{2}+x_{3}=6 \\ x_{1}+x_{2}+x_{3}=1\end{array}\right\}$ has no solutions.

Solution: True. Applying the elementary row operations $R_{3}-\frac{1}{4} R_{1}$ and $R_{3}-\frac{1}{4} R_{2}$, we find that the following matrices are row equivalent

$$
[A \mid b]=\left[\begin{array}{lll|l}
1 & 2 & 3 & 2 \\
3 & 2 & 1 & 6 \\
1 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|c}
1 & 2 & 3 & 2 \\
3 & 2 & 1 & 6 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

We see that $\operatorname{rank}([A \mid b])=3$ whereas $\operatorname{rank}(A)=2$. Thus the system is inconsistent and it has no solutions.

Question 2. (25 point) Consider $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4} \mid a_{1}-2 a_{2}+3 a_{3}-4 a_{4}=0\right\}$ and $U=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4} \mid a_{1}=a_{2}\right\}$. You are given that W and U are subspaces of the vector space $V=\mathbb{R}^{4}$.
(a) Find a basis β for W that contains $S=\{(1,0,1,1),(3,1,1,1)\}$.

Solution: A basis for W can be found by $A x=0$ with $A=\left[\begin{array}{cccc}1 & -2 & 3 & -4\end{array}\right]$. A basis for the solutions space, namely W, is given by $\beta=\{(2,1,0,0),(-3,0,1,0),(4,0,0,1)\}$. The union $S \cup \beta$ is a generating set for W which is not linearly dependent. Using the Gaussian Elimination, we obtain

$$
\left[\begin{array}{ccccc}
1 & 3 & 2 & -3 & 4 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{ccccc}
\mathbf{1} & 0 & -1 & 0 & 1 \\
0 & \mathbf{1} & 1 & 0 & 0 \\
0 & 0 & 0 & \mathbf{1} & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We shall remove the third and the fifth vectors from this union since they can be expressed as a linear combination of the other three vectors. Thus $\gamma=S \cup\{(-3,0,1,0)\}$ is a basis for W containing S.
(b) Show that $\operatorname{dim}(W \cap U)=2$ by finding a basis for $W \cap U$.

Solution: We shall solve the system of equations $a_{1}-2 a_{2}+3 a_{3}-4 a_{4}=0$ and $a_{1}-a_{2}=0$. Using the Gaussian Elimination, we obtain

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & -4 \\
1 & -1 & 0 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{cccc}
1 & 0 & -3 & 4 \\
0 & 1 & -3 & 4
\end{array}\right] .
$$

From this computation, we find that $\alpha=\{(3,3,1,0),(-4,-4,0,1)\}$ is a basis for $W \cap U$.
(c) Find f in the dual space of V such that $\operatorname{Ker}(f)=U$.

Solution: Consider the map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ given by the formula $f\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=a_{1}-a_{2}$. The map f is clearly linear and it satisfies $\operatorname{Ker}(f)=U$.
(d) Does there exist g in the dual space of V such that $\operatorname{Ker}(g)=W \cap U$?

Solution: Such a $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ does not exist. To see this, we can use the Dimension Theorem. The nullity of g is precisely two by the part (b). Moreover the rank of g is at most 1 . The rank and nullity do not add up to 4 , a contradiciton.

Question 3. (25 point) Consider the linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by the formula

$$
T(a, b, c, d)=(a+c+2 d, b+2 c+3 d,-a+b+c+d, a-b-c) .
$$

(a) Find the rank and the nullity of T.

Solution: Let $\beta=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard ordered basis for \mathbb{R}^{4}. Using the Gaussian Elimination, we obtain

$$
[T]_{\beta}^{\beta}=\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From this computation, we find that the nullity of T is one. Indeed, the kernel of T is spanned by $(-1,-2,1,0)$. By the Dimension Theorem, the rank of T must be three.
(b) Determine whether $u=(2,0,1,9) \in \operatorname{Im}(T)$ or not. Find the inverse image $T^{-1}(u)$.

Solution: Applying the elementary row operations $R_{3}+R_{1}$ and $R_{3}-R_{2}$, we find that

$$
\left[\begin{array}{cccc|c}
1 & 0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 & 0 \\
-1 & 1 & 1 & 1 & 1 \\
1 & -1 & -1 & 0 & 9
\end{array}\right] \longrightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & \mathbf{3} \\
1 & -1 & -1 & 0 & 9
\end{array}\right]
$$

The system is inconsistent because of the nonzero entry 3 in the fifth column. It follows that the inverse image $T^{-1}(u)$ is the empty set.
(c) Determine whether $v=(3,4,1,0) \in \operatorname{Im}(T)$ or not. Find the inverse image $T^{-1}(v)$.

Solution: Using the Gaussian Elimination, we obtain

$$
\left[\begin{array}{cccc|c}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3 & 4 \\
-1 & 1 & 1 & 1 & 1 \\
1 & -1 & -1 & 0 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{llll|l}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In this case, the system is consistent since the rank of $[T]_{\beta}^{\beta}$ and the augmented matrix above agree. A solution to the system is easily seen to be $s=(1,1,0,1)$. In other words $T(1,1,0,1)=(3,4,0,1)$. This is not the only element of $T^{-1}(3,4,1,0)$. Recall that the solutions of the homogeneous system is spanned by $(-1,-2,1,0)$. Thus

$$
T^{-1}(3,4,1,0)=\{(1-t, 1-2 t, t, 1) \mid t \in \mathbb{R}\} .
$$

Question 4. (10 point) Let V and W be finite dimensional vector spaces such that $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(W)$, and let $T: V \rightarrow W$ be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]_{\beta}^{\gamma}$ is a diagonal matrix.

Solution: Set $n=\operatorname{dim}(\mathrm{V})=\operatorname{dim}(W)$. Let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for $\operatorname{Ker}(T)$. We extend the set B to a basis $\beta=\left\{v_{1} \ldots v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ of V. Set $w_{k+1}=T\left(v_{k+1}\right), \ldots, w_{n}=$ $T\left(v_{n}\right)$. The image set $\operatorname{Im}(T)$ is spanned by $G=\left\{w_{k+1}, \ldots, w_{n}\right\}$. The Dimension Theorem implies that the set G is linearly independent. We extend the set G to a basis $\gamma=\left\{w_{1} \ldots w_{k}, w_{k+1}, \ldots, w_{n}\right\}$ of W. As a result, $[T]_{\beta}^{\gamma}$ is a diagonal matrix in which the last k entry in the diagonal are 1 and the other entries are 0 :

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{cccccc}
0 & & & & & \\
& \ddots & & & & \\
& & 0 & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right]
$$

Question 5. (15 point) Find all $x \in \mathbb{R}$ such that $\operatorname{det}\left(\left[\begin{array}{llll}0 & 1 & 1 & x \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ x & 1 & 1 & 0\end{array}\right]\right)=0$.

Solution: We have

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{llll}
0 & 1 & 1 & x \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
x & 1 & 1 & 0
\end{array}\right]\right) & =\operatorname{det}\left(\left[\begin{array}{cccc}
0 & 1 & 1 & x \\
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1-x & -x
\end{array}\right]\right) \\
& =0+(-1)^{2+1} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & x \\
1 & -1 & 0 \\
1 & 1-x & -x
\end{array}\right]\right)+0+0 \\
& =-\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & x \\
0 & -2 & -x \\
0 & -x & -2 x
\end{array}\right]\right) \\
& =-\left((-1)^{1+1} \operatorname{det}\left(\left[\begin{array}{cc}
-2 & -x \\
-x & -2 x
\end{array}\right]\right)+0+0\right) \\
& =x^{2}-4 x
\end{aligned}
$$

We conclude that the determinant is zero if and only if $x=0$ or $x=4$.

