M ET U
 Department of Mathematics

1. $(\mathbf{2 x} \mathbf{6}=\mathbf{1 2} \mathbf{p t s})$ Evaluate the following limits if they exist. (Do not use L'Hospital's Rule.)

- $\lim _{x \rightarrow \frac{1}{2}} \frac{\cos (\pi x)}{x-\frac{1}{2}}$
- $\lim _{x \rightarrow 1} \frac{x^{2016}+x^{153}-2}{x-1}$

2. $(2 \mathbf{x} 6=12 \mathbf{p t s})$ Evaluate the following derivatives. (Do not simplify.)

- $\frac{d}{d x}\left[x^{3} \tan \left(\cos \left(x^{2}\right)\right)\right]$
- $\frac{d}{d x}\left(\frac{x}{x^{153}+\frac{2016}{x^{2}+1}}\right)$

3. (12pts) Find the derivative of $f(x)=\sqrt[3]{x}$ by using the definition.
4. (14pts) Use a suitable linearization to approximate $\sqrt[3]{128}$. Estimate the size of the error.
5. $(5 \times 5=25 p t s)$ Determine if the given statement is true or false. If it is true, prove it. If it is false, give a counterexample.

- Suppose that $f(x)$ is continuous on $[0,2]$ and $f(0)=f(2)$. Then there exists a number $c \in[0,1]$ such that $f(c)=f(c+1)$.
- Suppose that f is a differentiable function on the whole real line such that $f(0)=0$ and $f(1)=1$. Then there exists a number $c \in(0,1)$ such that $f^{\prime}(c)=2 c$.
- There exists a function $f(x)$ such that $f^{\prime}(x)=|x|$.
- If $f(x)$ is differentiable at $x=x_{0}$, then $|f(x)|$ is differentiable at $x=x_{0}$.
- If $|f(x)|$ is differentiable at $x=x_{0}$, then $f(x)$ is differentiable at $x=x_{0}$.

6. (10pts) Find an equation of the tangent line to the curve defined by the equation $x^{2}-y^{2}=\sin (y)$ at the point (π, π).
7. (15pts) Let $g(x)= \begin{cases}a x+a & \text { if } x<a, \\ 2 a+2 & \text { if } x=a, \\ b x-1 & \text { if } x>a .\end{cases}$
a) Determine all possible values of a and b so that $g(x)$ is continuous at $x=a$.
b) Determine all possible values of a and b so that $g(x)$ is differentiable at $x=a$.
