Department of Mathematics

1. (25pts) Let $G=\langle a\rangle$ be a cyclic group generated by an element of order 28.
(a) Find all elements which generate G.

Solution: The generators of G are of the form a^{k} with $\operatorname{gcd}(28, k)=1$ and $1 \leq k \leq 28$. All elements which generate G are

$$
a^{1}, a^{3}, a^{5}, a^{9}, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}, a^{27} .
$$

(b) List all elements of the subgroup $\left\langle a^{4}\right\rangle$ and determine their orders.

Solution: We have $\left\langle a^{4}\right\rangle=\left\{a^{0}, a^{4}, a^{8}, a^{12}, a^{16}, a^{20}, a^{24}\right\}$. Note that $\left|\left\langle a^{4}\right\rangle\right|=7$. An element of $\left\langle a^{4}\right\rangle$ must have order dividing 7. Recall that the identity is the unique element with order 1. It follows that each element that is not identity must have order 7 .
(c) What are the generators of the subgroup $\left\langle a^{4}\right\rangle$?

Solution: The set of generators of $\left\langle a^{4}\right\rangle$ consists of all the elements of $\left\langle a^{4}\right\rangle$ except the identity element. More precisely, we have

$$
\left\langle a^{4}\right\rangle-\left\{a^{0}\right\}=\left\{a^{4}, a^{8}, a^{12}, a^{16}, a^{20}, a^{24}\right\} .
$$

There are 6 elements that generate $\left\langle a^{4}\right\rangle$.
(d) Find all subgroups of G and determine their orders.

Solution: A subgroup of a cyclic group must be cyclic as well. So there is one-toone correspondence between the positive divisors of 28 and the subgroups of G with the corresponding order. The positive divisors of 28 are $1,2,4,7,14$ and 28 . The corresponding subgroups are $\left\langle a^{28}\right\rangle,\left\langle a^{14}\right\rangle,\left\langle a^{7}\right\rangle,\left\langle a^{4}\right\rangle,\left\langle a^{2}\right\rangle$ and $\left\langle a^{1}\right\rangle$, respectively.
2. (25pts) Let $\sigma=(1923)(1965)(1487)$ in S_{9}
(a) Express σ as a product of disjoint cycles .

Solution: We have $\sigma=(148723)(596)$
(b) Find the order of σ.

Solution: The permutation σ is a product of two disjoint cycles of lenghts 6 and 3 . It follows that the order of σ is 6 , the least common multiple of 6 and 3. Alternatively, note that $(148723)^{k} \neq(1)$ for $k=1,2,3,4,5$ but $(148723)^{6}=(1)$. It follows that the order of σ is at least 6 . On the other hand $(596)^{6}=(1)$, too. It follows that the order of σ is 6 .
(c) Find σ^{183}.

Solution: From the previous part, we know that $\sigma^{6}=(1)$. By using the division algorithm, we obtain $183=6 \cdot 30+3$. It follows that

$$
\sigma^{183}=\sigma^{6 \cdot 30+3}=\left(\sigma^{6}\right)^{30} \sigma^{3}=\sigma^{3}
$$

By using the representation of σ in terms of disjoint cycles, we easily find that

$$
\sigma^{183}=\sigma^{3}=(17)(42)(83)
$$

(d) Write σ as a product of transpositions. Is σ odd or even?

Solution: We have

$$
\sigma=(1923) \cdot(1965) \cdot(1487)=[(13)(12)(19)] \cdot[(15)(16)(19)] \cdot[(17)(18)(14)]
$$

or

$$
\sigma=(148723) \cdot(596)=[(13)(12)(17)(18)(14)] \cdot[(56)(59)]
$$

The element σ is odd since it can be written as a product of odd number of transpositions.
(e) If $\alpha=(1524) \in S_{9}$, then find the conjugate $\alpha \sigma \alpha^{-1}$.

We have

$$
\begin{aligned}
\alpha \sigma \alpha^{-1} & =[\alpha(1) \alpha(9) \alpha(2) \alpha(3)] \cdot[\alpha(1) \alpha(9) \alpha(6) \alpha(5)] \cdot[\alpha(1) \alpha(4) \alpha(8) \alpha(7)] \\
& =(5943) \cdot(5962) \cdot(5187) \\
& =(187435)(296)
\end{aligned}
$$

3. (25pts) Let G be the subset of \mathbb{Z}_{16} which consists of elements with multiplicative inverses. You are given that G is a group under multiplication. Let H be the subgroup of G generated by [7].
(a) Find the multiplication table of the quotient group G / H.

Solution: The elements of G can be represented by odd integers in between 1 and 16 . More precisely, we have

$$
G=\{[1],[3],[5],[7],[9],[11],[13],[15]\} .
$$

Moreover $H=\langle[7]\rangle=\{[1],[7]\}$. There are 4 (left) cosets of H, namely:

$$
[1] H=[7] H, \quad[3] H=[5] H, \quad[9] H=[15] H \quad \text { and } \quad[11] H=[13] H .
$$

The multiplication table of the quotient group G / H is as follows:

$*$	$[1] H$	$[3] H$	$[9] H$	$[11] H$
$[1] H$	$[1] H$	$[3] H$	$[9] H$	$[11] H$
$[3] H$	$[3] H$	$[9] H$	$[11] H$	$[1] H$
$[9] H$	$[9] H$	$[11] H$	$[1] H$	$[3] H$
$[11] H$	$[11] H$	$[1] H$	$[3] H$	$[9] H$

(b) Determine whether G / H is isomorphic to \mathbb{Z}_{4}. Justify your answer.

Solution: The quotient group G / H is cyclic of order 4 and generated by [3] H (or by $[11] H$). The group \mathbb{Z}_{4} is also cyclic and generated by [1] (or by [3]).

We can construct an isomorphism by sending the generator $[3] H \in G / H$ to the generator $[1] \in \mathbb{Z}_{4}$.
Consider the map $f: G / H \rightarrow \mathbb{Z}_{4}$ given by $([3] H)^{k} \mapsto k[1]$ for any integer k. The map $f: G / H \rightarrow \mathbb{Z}_{4}$ is easily verified to be a homomorphism since

$$
f\left(([3] H)^{k+\ell}\right)=(k+\ell)[1]=k[1]+\ell[1] .
$$

Moreover this map is bijective since

$$
[3] H \mapsto[1], \quad[9] H \mapsto[2], \quad[11] H \mapsto[3] \quad \text { and } \quad[1] H \mapsto[0] .
$$

We have proved that G / H is isomorphic to \mathbb{Z}_{4} by the isomorphism $f: G / H \rightarrow \mathbb{Z}_{4}$.
4. (25pts) You are given that

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

is a ring with respect to the matrix addition and multiplication.
(a) Is R a commutative ring?

Solution: The ring R is commutative because

$$
\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
c & d \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
a c & a d+b c \\
0 & a c
\end{array}\right]=\left[\begin{array}{cc}
c & d \\
0 & c
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right] .
$$

(b) Does R have a unity?

Solution: The element $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in R$ satisfies

$$
\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right] .
$$

We conclude that the ring R has a unity .
(c) Is R an integral domain?

Solution: The R is not an integral domain because it has zero divisors. For example

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

even though

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

(d) Is R a field?

Solution: We claim that the element $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in R$ does not have a multiplicative inverse. Assume otherwise, then

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

for some real numbers a and b. On the other hand

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right] .
$$

This is a contradiction. The ring R has a nonzero element which does not have a multiplicative inverse. Thus R is not a field.

