M E T U Department of Mathematics

	Basic Algebraic Structures				
		FINAL EXAM	I		
Code :		Last Name :			
Acad. Year : 2018 Spring Instructor : A.Beyaz, G.Ercan,		Name :	Student No). :	
M.Kuzucuoğlu, Ö.Küçüksakallı		Department :	Section	:	
F. Özbudak.		Signature :			
Date : Time :	June 3, 2018	4 QU	ESTIONS ON 4 PAGES	5	
-	120 minutes	-	00 TOTAL POINTS		
1 2 3	4				

- **1.** (25pts) Let R be a ring. Consider $Z(R) = \{x \in R \mid xr = rx \text{ for all } r \in R\}.$
- (a) Prove that Z(R) is a subring of R.

Solution: The additive identity $0 = 0_R$ is an element of Z(R). This is because 0r = r0 for all $r \in R$. Thus Z(R) is nonempty.

Let x and y be elements of Z(R). We have xr = rx and yr = ry for all $r \in R$. Our purpose is to show that $x - y \in Z(R)$ and $xy \in Z(R)$.

For all $r \in R$, we have

$$(x-y)r = xr - yr = rx - ry = r(x-y).$$

Here, the first and the last equality are obtained by the distributive laws. The equality in the middle holds because $x \in Z(R)$ and $y \in Z(R)$. We conclude that $x - y \in Z(R)$. Secondly, we have

$$xyr = xry = rxy.$$

for all $r \in R$. Here, the first and the second equalities follow from $x \in Z(R)$ and $y \in Z(R)$, respectively. Thus we have $xy \in Z(R)$.

(b) Give an example of a ring R such that Z(R) is not an ideal of R.

Solution: If R is a commutative ring then R = Z(R) and therefore Z(R) is trivially an ideal. We shall look for a counterexample of a ring R in which the ring multiplication is not commutative.

Indeed, any non-commutative ring with unity constitutes a counterexample. In such a case pick $x \in R - Z(R)$. On the other hand $1_R \in Z(R)$ but $1_R \cdot x \notin Z(R)$. Thus Z(R) is not an ideal.

In particular, the ring of quaternions is a concrete example. Recall that $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$. Observe that $1_{\mathbb{R}} \in Z(\mathbb{H})$ but $i \notin Z(\mathbb{H})$. On the other hand $1_{\mathbb{R}} \cdot i = i \notin Z(\mathbb{H})$.

- **2.** (25pts) Let $a \in \mathbb{Z}$. Define the map $\alpha : \mathbb{Z} \longrightarrow \mathbb{Z}_{15}$ by $\alpha(n) = [an]$ for each $n \in \mathbb{Z}$.
- (a) Show that α is a ring homomorphism if and only if $a^2 \equiv a \pmod{15}$.

Solution: Suppose that $\alpha : \mathbb{Z} \longrightarrow \mathbb{Z}_{15}$ is a ring homomorphism. We have

$$[a] = \alpha(1) = \alpha(1 \cdot 1) = \alpha(1)\alpha(1) = [a][a] = [a^2].$$

It follows that $a \equiv a^2 \pmod{15}$.

Conversely suppose that $a^2 \equiv a \pmod{15}$. Let x and y be elements of Z. We have

$$\alpha(xy) = [axy] = [a^2xy] = [ax][ay] = \alpha(x)\alpha(y)$$

Moreover,

$$\alpha(x+y) = [a(x+y)] = [ax+ay] = [ax] + [ay] = \alpha(x) + \alpha(y)$$

We conclude that α is a ring homomorphism.

(b) Now fix a = 6. For this choice, find $\text{Im}(\alpha)$ and $\text{Ker}(\alpha)$.

Solution: By definition, we have $\operatorname{Im}(\alpha) = \{\alpha(x) \mid x \in \mathbb{Z}\}$. For a = 6, the image is given by $\{[6x] \mid x \in \mathbb{Z}\}$. Clearly, $\operatorname{Im}(\alpha) \supseteq \{[0], [3], [6], [9], [12]\}$. Conversely, $\operatorname{Im}(\alpha) \subseteq \{[0], [3], [6], [9], [12]\}$ because $\operatorname{gcd}(6, 15) = 3$. We conclude that

$$Im(\alpha) = \{[0], [3], [6], [9], [12]\}$$

By definition, we have $\operatorname{Ker}(\alpha) = \{x \in \mathbb{Z} \mid \alpha(x) = [0]\}$. For a = 6, the kernel is given by $\{x \in \mathbb{Z} \mid [6x] = [0]\}$. Observe that $15|6x \Leftrightarrow 5|2x \Leftrightarrow 5|x$. We see that $x \in \operatorname{Ker}(\alpha)$ if and only if 5|x. Therefore

$$\operatorname{Ker}(\alpha) = \langle 5 \rangle = \{ 5k \mid k \in \mathbb{Z} \}.$$

- **3.** (25pts) Let $R = \mathbb{Z}_{12}$ and $I = \langle [3] \rangle$ be the principal ideal of R generated by [3].
- (a) List all elements of $I = \langle [3] \rangle$. (Hint: |I| = 4) Solution: $I = \langle [3] \rangle = \{ [3], [6], [9], [0] \}$.
- (b) List all elements of R/I. (Hint: |R/I| = 3) Solution: $R/I = \{[0] + I, [1] + I, [2] + I\}$.
- (c) Find the addition and the multiplication tables of the quotient ring R/I. Solution: The addition table of the quotient ring R/I is as follows:

	[0] + I		
	[0] + I		
[1] + I	[1] + I	[2] + I	[0] + I
[2] + I	[2] + I	[0] + I	[1] + I

The multiplication table of the quotient ring R/I is as follows:

*	[0] + I	[1] + I	[2] + I
[0] + I	[0] + I	[0] + I	[0] + I
	[0] + I		
[2] + I	[0] + I	[2] + I	[1] + I

(d) Is R/I an integral domain?

Solution: Yes! The ring $R = Z_{12}$ is commutative. It follows that R/I is commutative, too. Note that [1] + I is the multiplicative identity of R/I. Finally, each possible pairs of nonzero elements have nonzero products. We verify this by checking each case as follows:

$$([1] + I)([1] + I) = ([1] + I) \neq ([0] + I),$$

$$([1] + I)([2] + I) = ([2] + I) \neq ([0] + I),$$

$$([2] + I)([1] + I) = ([2] + I) \neq ([0] + I),$$

$$([2] + I)([2] + I) = ([1] + I) \neq ([0] + I).$$

(e) Is R/I a field?

Solution: Yes! The quotient ring R/I has three elements and it is an integral domain. It follows that R/I is a field because any finite integral domain is a field. 4. (25pts) Let $f(x) = x^4 + 4x^3 + 8x^2 + 9x + 2$ and $g(x) = x^3 + 4x^2 + 7x + 6$ be elements of the ring $\mathbb{R}[x]$.

(a) Show that the greatest common divisor of f(x) and g(x) is d(x) = x + 2.

Solution: We apply the Euclidean algorithm:

$$f(x) = g(x) \cdot x + (x^2 + 3x + 2)$$
$$g(x) = (x^2 + 3x + 2) \cdot (x + 1) + (2x + 4)$$
$$x^2 + 3x + 2 = (2x + 4) \cdot \left(\frac{x}{2} + \frac{1}{2}\right) + 0$$

Recall that the greatest common divisor is monic by definition. We conclude that the greatest common divisor of f(x) and g(x) is d(x) = x + 2.

(b) Find polynomials s(x) and t(x) in $\mathbb{R}[x]$ such that d(x) = f(x)s(x) + g(x)t(x). Solution: We apply the Euclidean algorithm in reverse:

$$2x + 4 = g(x) - (x^{2} + 3x + 2)(x + 1)$$

= $g(x) - (f(x) - xg(x))(x + 1)$
= $f(x) \cdot (-(x + 1)) + g(x) \cdot (x^{2} + x + 1)$

We can pick s(x) = -(x+1)/2 and $t(x) = (x^2 + x + 1)/2$ which are elements of $\mathbb{R}[x]$.

(c) Write g(x) as a product of irreducible polynomials over \mathbb{R} .

Solution: Observe that $g(x) = (x+2)(x^2+2x+3)$. It is obvious that the term x+2 is irreducible. The quadratic term $x^2 + 2x + 3$ is irreducible if and only if it has no real zeroes. Completing it to a square, we find that $x^2 + 2x + 3 = (x+1)^2 + 2$. It is obvious that this expression is strictly positive. Thus the polynomial $x^2 + 2x + 3$ is irreducible over \mathbb{R} , too. The (unique) factorization of g(x) into irreducibles is $(x+2)(x^2+2x+3)$.