# Department of Mathematics 



1. (25pts) Let $R$ be a ring. Consider $Z(R)=\{x \in R \mid x r=r x$ for all $r \in R\}$.
(a) Prove that $Z(R)$ is a subring of $R$.

Solution: The additive identity $0=0_{R}$ is an element of $Z(R)$. This is because $0 r=r 0$ for all $r \in R$. Thus $Z(R)$ is nonempty.

Let $x$ and $y$ be elements of $Z(R)$. We have $x r=r x$ and $y r=r y$ for all $r \in R$. Our purpose is to show that $x-y \in Z(R)$ and $x y \in Z(R)$.

For all $r \in R$, we have

$$
(x-y) r=x r-y r=r x-r y=r(x-y) .
$$

Here, the first and the last equality are obtained by the distributive laws. The equality in the middle holds because $x \in Z(R)$ and $y \in Z(R)$. We conclude that $x-y \in Z(R)$. Secondly, we have

$$
x y r=x r y=r x y .
$$

for all $r \in R$. Here, the first and the second equalities follow from $x \in Z(R)$ and $y \in Z(R)$, respectively. Thus we have $x y \in Z(R)$.
(b) Give an example of a ring $R$ such that $Z(R)$ is not an ideal of $R$.

Solution: If $R$ is a commutative ring then $R=Z(R)$ and therefore $Z(R)$ is trivially an ideal. We shall look for a counterexample of a ring $R$ in which the ring multiplication is not commutative.

Indeed, any non-commutative ring with unity constitutes a counterexample. In such a case pick $x \in R-Z(R)$. On the other hand $1_{R} \in Z(R)$ but $1_{R} \cdot x \notin Z(R)$. Thus $Z(R)$ is not an ideal.

In particular, the ring of quaternions is a concrete example. Recall that $\mathbb{H}=\{a+$ $b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$. Observe that $1_{\mathbb{R}} \in Z(\mathbb{H})$ but $i \notin Z(\mathbb{H})$. On the other hand $1_{\mathbb{R}} \cdot i=i \notin Z(\mathbb{H})$.
2. (25pts) Let $a \in \mathbb{Z}$. Define the map $\alpha: \mathbb{Z} \longrightarrow \mathbb{Z}_{15}$ by $\alpha(n)=[a n]$ for each $n \in \mathbb{Z}$.
(a) Show that $\alpha$ is a ring homomorphism if and only if $a^{2} \equiv a(\bmod 15)$.

Solution: Suppose that $\alpha: \mathbb{Z} \longrightarrow \mathbb{Z}_{15}$ is a ring homomorphism. We have

$$
[a]=\alpha(1)=\alpha(1 \cdot 1)=\alpha(1) \alpha(1)=[a][a]=\left[a^{2}\right] .
$$

It follows that $a \equiv a^{2}(\bmod 15)$.
Conversely suppose that $a^{2} \equiv a(\bmod 15)$. Let $x$ and $y$ be elements of $\mathbb{Z}$. We have

$$
\alpha(x y)=[a x y]=\left[a^{2} x y\right]=[a x][a y]=\alpha(x) \alpha(y) .
$$

Moreover,

$$
\alpha(x+y)=[a(x+y)]=[a x+a y]=[a x]+[a y]=\alpha(x)+\alpha(y)
$$

We conclude that $\alpha$ is a ring homomorphism.
(b) Now fix $a=6$. For this choice, find $\operatorname{Im}(\alpha)$ and $\operatorname{Ker}(\alpha)$.

Solution: By definition, we have $\operatorname{Im}(\alpha)=\{\alpha(x) \mid x \in \mathbb{Z}\}$. For $a=6$, the image is given by $\{[6 x] \mid x \in \mathbb{Z}\}$. Clearly, $\operatorname{Im}(\alpha) \supseteq\{[0],[3],[6],[9],[12]\}$. Conversely, $\operatorname{Im}(\alpha) \subseteq$ $\{[0],[3],[6],[9],[12]\}$ because $\operatorname{gcd}(6,15)=3$. We conclude that

$$
\operatorname{Im}(\alpha)=\{[0],[3],[6],[9],[12]\} .
$$

By definition, we have $\operatorname{Ker}(\alpha)=\{x \in \mathbb{Z} \mid \alpha(x)=[0]\}$. For $a=6$, the kernel is given by $\{x \in \mathbb{Z} \mid[6 x]=[0]\}$. Observe that $15|6 x \Leftrightarrow 5| 2 x \Leftrightarrow 5 \mid x$. We see that $x \in \operatorname{Ker}(\alpha)$ if and only if $5 \mid x$. Therefore

$$
\operatorname{Ker}(\alpha)=\langle 5\rangle=\{5 k \mid k \in \mathbb{Z}\}
$$

3. (25pts) Let $R=\mathbb{Z}_{12}$ and $I=\langle[3]\rangle$ be the principal ideal of $R$ generated by [3].
(a) List all elements of $I=\langle[3]\rangle$. (Hint: $|I|=4$ )

Solution: $I=\langle[3]\rangle=\{[3],[6],[9],[0]\}$.
(b) List all elements of $R / I$. (Hint: $|R / I|=3$ )

Solution: $R / I=\{[0]+I,[1]+I,[2]+I\}$.
(c) Find the addition and the multiplication tables of the quotient ring $R / I$.

Solution: The addition table of the quotient ring $R / I$ is as follows:

| + | $[0]+I$ | $[1]+I$ | $[2]+I$ |
| :---: | :---: | :---: | :---: |
| $[0]+I$ | $[0]+I$ | $[1]+I$ | $[2]+I$ |
| $[1]+I$ | $[1]+I$ | $[2]+I$ | $[0]+I$ |
| $[2]+I$ | $[2]+I$ | $[0]+I$ | $[1]+I$ |

The multiplication table of the quotient ring $R / I$ is as follows:

| $*$ | $[0]+I$ | $[1]+I$ | $[2]+I$ |
| :---: | :---: | :---: | :---: |
| $[0]+I$ | $[0]+I$ | $[0]+I$ | $[0]+I$ |
| $[1]+I$ | $[0]+I$ | $[1]+I$ | $[2]+I$ |
| $[2]+I$ | $[0]+I$ | $[2]+I$ | $[1]+I$ |

(d) Is $R / I$ an integral domain?

Solution: Yes! The ring $R=Z_{12}$ is commutative. It follows that $R / I$ is commutative, too. Note that $[1]+I$ is the multiplicative identity of $R / I$. Finally, each possible pairs of nonzero elements have nonzero products. We verify this by checking each case as follows:

$$
\begin{aligned}
& ([1]+I)([1]+I)=([1]+I) \neq([0]+I), \\
& ([1]+I)([2]+I)=([2]+I) \neq([0]+I), \\
& ([2]+I)([1]+I)=([2]+I) \neq([0]+I), \\
& ([2]+I)([2]+I)=([1]+I) \neq([0]+I) .
\end{aligned}
$$

(e) Is $R / I$ a field?

Solution: Yes! The quotient ring $R / I$ has three elements and it is an integral domain. It follows that $R / I$ is a field because any finite integral domain is a field.
4. (25pts) Let $f(x)=x^{4}+4 x^{3}+8 x^{2}+9 x+2$ and $g(x)=x^{3}+4 x^{2}+7 x+6$ be elements of the ring $\mathbb{R}[x]$.
(a) Show that the greatest common divisor of $f(x)$ and $g(x)$ is $d(x)=x+2$.

Solution: We apply the Euclidean algorithm:

$$
\begin{aligned}
f(x) & =g(x) \cdot x+\left(x^{2}+3 x+2\right) \\
g(x) & =\left(x^{2}+3 x+2\right) \cdot(x+1)+(2 x+4) \\
x^{2}+3 x+2 & =(2 x+4) \cdot\left(\frac{x}{2}+\frac{1}{2}\right)+0
\end{aligned}
$$

Recall that the greatest common divisor is monic by definition. We conclude that the greatest common divisor of $f(x)$ and $g(x)$ is $d(x)=x+2$.
(b) Find polynomials $s(x)$ and $t(x)$ in $\mathbb{R}[x]$ such that $d(x)=f(x) s(x)+g(x) t(x)$.

Solution: We apply the Euclidean algorithm in reverse:

$$
\begin{aligned}
2 x+4 & =g(x)-\left(x^{2}+3 x+2\right)(x+1) \\
& =g(x)-(f(x)-x g(x))(x+1) \\
& =f(x) \cdot(-(x+1))+g(x) \cdot\left(x^{2}+x+1\right)
\end{aligned}
$$

We can pick $s(x)=-(x+1) / 2$ and $t(x)=\left(x^{2}+x+1\right) / 2$ which are elements of $\mathbb{R}[x]$.
(c) Write $g(x)$ as a product of irreducible polynomials over $\mathbb{R}$.

Solution: Observe that $g(x)=(x+2)\left(x^{2}+2 x+3\right)$. It is obvious that the term $x+2$ is irreducible. The quadratic term $x^{2}+2 x+3$ is irreducible if and only if it has no real zeroes. Completing it to a square, we find that $x^{2}+2 x+3=(x+1)^{2}+2$. It is obvious that this expression is strictly positive. Thus the polynomial $x^{2}+2 x+3$ is irreducible over $\mathbb{R}$, too. The (unique) factorization of $g(x)$ into irreducibles is $(x+2)\left(x^{2}+2 x+3\right)$.

