M ET U
 Department of Mathematics

1. (16 pts) Give an example of a pair of sets A and B such that

- A is countably infinite and $A-B$ is finite.

Solution: Let $A=\mathbb{N}$ and $B=\mathbb{N}-\{1,2\}$. Then $A-B=\{1,2\}$ is a finite set.

- B and $A-B$ are both countably infinite.

Solution: Let $A=\mathbb{Z}$ and $B=\mathbb{N}$. Then $A-B=\{0,-1,-2,-3, \ldots\}$ is countably infinite.

- A, B and $A-B$ are all uncountable.

Solution: Let $A=\mathbb{R}$ and $B=\{x \in \mathbb{R}: x>0\}$. Then $A-B=\{x \in \mathbb{R}: x \leq 0\}$ is uncountable.

- A and B are both uncountable but $A-B$ is countable.

Solution: Let $A=\mathbb{R}$ and $B=\mathbb{R}-\{1,2\}$. Then $A-B=\{1,2\}$ is countable.
2. (12pts) Let A, B, C and D be sets. Suppose that $A \sim B$ and $C \sim D$. Prove that $A \times C \sim B \times D$.

Solution: Since $A \sim B$, there exists a bijective function $f: A \rightarrow B$ and since $C \sim D$, there exists a bijective function $g: C \rightarrow D$. Consider the function $h: A \times C \rightarrow B \times D$ defined by $h(a, c)=(f(a), g(c))$.

The function h is injective as $h\left(a_{1}, c_{1}\right)=h\left(a_{2}, c_{2}\right)$ implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ and $g\left(c_{1}\right)=g\left(c_{2}\right)$. Since f and g are both injective, we have $a_{1}=a_{2}$ and $c_{1}=c_{2}$.

The function h is surjective because if we are given $(b, d) \in B \times D$, then there exists $a \in A$ such that $f(a)=b$ and there exists $c \in C$ such that $g(c)=d$ since f and g are both surjective. As a result $h(a, c)=(f(a), g(c))=(b, d)$.
3. (12pts) Prove that the following formula holds for all $n \in \mathbb{N}$.

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Solution: It is easy to see that the formula is true for $n=1$ since $1^{3}=\frac{1^{2} \cdot 2^{2}}{4}$. Now suppose that the formula is true for some n. We want to show that the formula is true for $n+1$. Observe that

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+\ldots+n^{3}+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =(n+1)^{2}\left(\frac{n^{2}}{4}+(n+1)\right) \\
& =(n+1)^{2}\left(\frac{n^{2}+4 n+4}{4}\right) \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} .
\end{aligned}
$$

Hence the result is true for $n+1$. Then by PMI, it is true for all $n \in \mathbb{N}$.
4. (12pts) Prove that $3^{n}>n^{2}+n+10$ for all natural numbers $n \geq 3$.

Solution: The inequality is true for $n=3$ since $27>22=3^{2}+3+10$. Now suppose that the inequality is true for some natural number $n \geq 3$. We want to show that the inequality is true for $n+1$. Observe that

$$
\begin{aligned}
3^{n+1} & =3 \cdot 3^{n} \\
& >3\left(n^{2}+n+10\right) \\
& >n^{2}+3 n+12 \\
& =(n+1)^{2}+(n+1)+10
\end{aligned}
$$

Hence the result is true for $n+1$. Then by PMI, it is true for all natural numbers $n \geq 3$.
5. (12pts) Let $f: A \rightarrow B$ and $X \subseteq A$. If f is bijective then prove that $f(A-X)=B-f(X)$.

Solution: (Proof of \subseteq) Let b be an element of $f(A-X)$. Then there exists $a \in A-X$ such that $b=f(a)$. We want to show that b is not element of $f(X)$. Assume otherwise, then there exist $x \in X$ such that $b=f(x)$. Note that $a \notin X$ and $x \in X$ but their images are the same. This is a contradiction to the fact that f is injective.
(Proof of \supseteq) Let b be an element of $B-f(X)$. Since f is surjective, there exists $a \in A$ such that $b=f(a)$. Since $b=f(a)$ is not an element of $f(X)$, we conclude that $a \notin X$. Therefore $a \in A-X$ and as a result $b \in f(A-X)$.
6. (16pts) Let $T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y\right.$ or $\left.x^{2}+y^{2}=1\right\}$.

- Sketch the set T in the $x y$-plane.

Solution:

- Is T a function from \mathbb{R} to \mathbb{R} ?

Solution: No. Consider $x=3 / 5$. Then $x T y$ is true for $y=-4 / 5,3 / 5,4 / 5$. Thus T is not a function of x. Similarly T is not a function of y.

- Is T a partial order on \mathbb{R} ?

Solution: No. The relation T is not anti-symmetric. Note that $1 T 0$ and $0 T 1$ but $0 \neq 1$.

- Is T an equivalence relation on \mathbb{R} ?

Solution: No. The relation T is not transitive. Note that $-1 T 0$ and $0 T 1$ but -1 and 1 are not related under T.

