M E T U Department of Mathematics

Group	Fundamentals of Mathematics						List No.
Final							
Code Acad. Year Semester Instructor <i>M.Kuzuc</i>	• : 2013 : Fall : G.E	3 rcan, S		Last Nan Name Departm Signatur	: nent :	Student N Section	0. : :
Date Time Duration	uoğlu, Ö.Küçüksakallı. : January 21, 2014 : 13:30 : 120 minutes			6 QUESTIONS ON 4 PAGES 80 TOTAL POINTS			
1 2	3	4	5 6				

- 1. (16pts) Give an example of a pair of sets A and B such that
 - A is countably infinite and A B is finite.

Solution: Let $A = \mathbb{N}$ and $B = \mathbb{N} - \{1, 2\}$. Then $A - B = \{1, 2\}$ is a finite set.

• B and A - B are both countably infinite.

Solution: Let $A = \mathbb{Z}$ and $B = \mathbb{N}$. Then $A - B = \{0, -1, -2, -3, \ldots\}$ is countably infinite.

• A, B and A - B are all uncountable.

Solution: Let $A = \mathbb{R}$ and $B = \{x \in \mathbb{R} : x > 0\}$. Then $A - B = \{x \in \mathbb{R} : x \le 0\}$ is uncountable.

A and B are both uncountable but A − B is countable.
Solution: Let A = ℝ and B = ℝ − {1,2}. Then A − B = {1,2} is countable.

2. (12pts) Let A, B, C and D be sets. Suppose that $A \sim B$ and $C \sim D$. Prove that $A \times C \sim B \times D$.

Solution: Since $A \sim B$, there exists a bijective function $f : A \to B$ and since $C \sim D$, there exists a bijective function $g : C \to D$. Consider the function $h : A \times C \to B \times D$ defined by h(a, c) = (f(a), g(c)).

The function h is injective as $h(a_1, c_1) = h(a_2, c_2)$ implies $f(a_1) = f(a_2)$ and $g(c_1) = g(c_2)$. Since f and g are both injective, we have $a_1 = a_2$ and $c_1 = c_2$.

The function h is surjective because if we are given $(b,d) \in B \times D$, then there exists $a \in A$ such that f(a) = b and there exists $c \in C$ such that g(c) = d since f and g are both surjective. As a result h(a,c) = (f(a),g(c)) = (b,d).

3. (12pts) Prove that the following formula holds for all $n \in \mathbb{N}$.

$$1^{3} + 2^{3} + 3^{3} + \ldots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}.$$

Solution: It is easy to see that the formula is true for n = 1 since $1^3 = \frac{1^2 \cdot 2^2}{4}$. Now suppose that the formula is true for some *n*. We want to show that the formula is true for n + 1. Observe that

$$1^{3} + 2^{3} + 3^{3} + \ldots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$
$$= (n+1)^{2} \left(\frac{n^{2}}{4} + (n+1)\right)$$
$$= (n+1)^{2} \left(\frac{n^{2}+4n+4}{4}\right)$$
$$= \frac{(n+1)^{2}(n+2)^{2}}{4}.$$

Hence the result is true for n + 1. Then by PMI, it is true for all $n \in \mathbb{N}$.

4. (12pts) Prove that $3^n > n^2 + n + 10$ for all natural numbers $n \ge 3$.

Solution: The inequality is true for n = 3 since $27 > 22 = 3^2 + 3 + 10$. Now suppose that the inequality is true for some natural number $n \ge 3$. We want to show that the inequality is true for n + 1. Observe that $3^{n+1} = 3 \cdot 3^n$

$$= 3 \cdot 3$$

> 3(n² + n + 10)
> n² + 3n + 12
= (n + 1)² + (n + 1) + 10.

Hence the result is true for n + 1. Then by PMI, it is true for all natural numbers $n \ge 3$.

5. (12pts) Let $f: A \to B$ and $X \subseteq A$. If f is bijective then prove that f(A - X) = B - f(X).

Solution: (Proof of \subseteq) Let b be an element of f(A-X). Then there exists $a \in A-X$ such that b = f(a). We want to show that b is not element of f(X). Assume otherwise, then there exist $x \in X$ such that b = f(x). Note that $a \notin X$ and $x \in X$ but their images are the same. This is a contradiction to the fact that f is injective.

(Proof of \supseteq) Let b be an element of B - f(X). Since f is surjective, there exists $a \in A$ such that b = f(a). Since b = f(a) is not an element of f(X), we conclude that $a \notin X$. Therefore $a \in A - X$ and as a result $b \in f(A - X)$.

- 6. (16pts) Let $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y \text{ or } x^2 + y^2 = 1\}.$
 - Sketch the set T in the xy-plane.

Solution:

• Is T a function from \mathbb{R} to \mathbb{R} ?

Solution: No. Consider x = 3/5. Then x T y is true for y = -4/5, 3/5, 4/5. Thus T is not a function of x. Similarly T is not a function of y.

• Is T a partial order on \mathbb{R} ?

Solution: No. The relation T is not anti-symmetric. Note that 1 T 0 and 0 T 1 but $0 \neq 1$.

• Is T an equivalence relation on \mathbb{R} ?

Solution: No. The relation T is not transitive. Note that -1 T 0 and 0 T 1 but -1 and 1 are not related under T.