Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyüküşla basin

Eldert L. Advokaata,b, Douwe J.J. van Hinsbergena*, Nuretdin Kaymakçıc,d, Reinoud L.M. Vissersa and Bart W. H. Hendriksa

aDepartment of Earth Sciences, University of Utrecht, Utrecht, The Netherlands; bSE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, UK; cMiddle East Technical University, Department of Geological Engineering, Ankara, Turkey; dPalaeomagnetic Laboratory 'Fort Hoofddijk', Department of Earth Sciences, University of Utrecht, Utrecht, The Netherlands; eCentre for Geodynamics, Geological Survey of Norway (NGU), Trondheim, Norway

(REceived 10 March 2014; accepted 10 August 2014)

The configuration and evolution of subduction zones in the Eastern Mediterranean region in Cretaceous time accommodating Africa–Europe convergence remain poorly quantitatively reconstructed, owing to a lack of kinematic constraints. A recent palaeomagnetic study suggested that the triangular Central Anatolian Crystalline Complex (CACC) consists of three blocks that once formed an ~N–S elongated continental body, underthrust below ophiolites in Late Cretaceous time. After extensional exhumation and upon Palaeogene collision of the CACC with the Pontides of the southern Eurasian margin, the CACC broke into three fragments that rotated and converged relative to each other. Here, we date the extension and contraction history of the boundary between two of the rotating metasomatics of the CACC by studying the Upper Cretaceous–Palaeogene Ayhan–Büyüküşla basin. We report an 39Ar/39Ar age of an andesite at the base of the sequence to show that the deposition started in an E–W extensional basin around 72.11 ± 1.46. The basin developed contemporaneously with regional exhumation of the CACC metamorphics. The lower basin sedimentary rocks were unconformably covered by mid-Eocene limestones and redbeds, followed by intense folding and thrust faulting. Two balanced cross-sections in the study area yield a minimum of 17–27 km of post-mid-Eocene ~N–S shortening. We thus demonstrate the Cenozoic compressional nature of the Kırşehir–Niğde–Hırkadağ block boundary and show that the extensional exhumation of the CACC predates collision-related contraction. A plate kinematic scenario is required to explain these observations that involves two Late Cretaceous–Palaeogene subduction zones to the north and south of the CACC, for which we show a possible plate boundary configuration.

Keywords: Turkey; geodynamics; tectonics; basin; Ar/Ar dating

1. Introduction

Closure of the Neotethyan oceanic domain was associated with the subduction of oceanic and continental lithosphere below continental and oceanic plates and led to Jurassic and younger deformation, magmatism, and metamorphism in the eastern Mediterranean region (Sengör and Yilmaz 1981; Dercourt et al. 1986; Stampfl and Hochard 2009). In the Aegean region, Late Cretaceous and younger Africa–Europe convergence was accommodated along a single subduction zone below the Eurasian continental margin and was associated with accretion of continental and oceanic (upper) crust to the overriding plate, forming an elevated fold–thrust belt (Faccenna et al. 2003; van Hinsbergen et al. 2005, 2010; Jolivet and Brun 2010). Subsequently, during periods of slab rollback, the previously buried and metamorphosed parts of the fold–thrust belt became exhumed as a result of widespread extension of the overriding plate (Dilek and Altunkaynak 2007, 2009; Dilek and Sandvol 2009; Edwards and Grasemann 2009; Jolivet et al. 2009; Jolivet and Brun 2010; van Hinsbergen and Schmid 2012). In Anatolia, however, the tectonic accommodation of Africa–Europe convergence was more complex and was accommodated by multiple, partly synchronous subduction zones; many different scenarios for the number and configurations of subduction systems have been proposed (e.g. Stampfl and Borel 2002; Robertson 2004; Okay et al. 2006; Barri and Vrielynck 2008; Moix et al. 2008; Lefèvre et al. 2013; Okay et al. 2013); the kinematic reconstruction of subduction systems in the eastern Mediterranean region proves to be challenging.

The Central Anatolian Crystalline Complex (CACC) in Turkey (Gönçüoğlu et al. 1991) (Figure 1; also known as the Kırşehir Block (Görür et al. 1984)) is a key region in our attempts to reconstruct the eastern Mediterranean subduction zone configuration since the Late Cretaceous. The CACC is a 200 km × 200 km × 200 km, triangular continental domain surrounded by suture zone(s) and belts of high-pressure (HP) metamorphic rocks that demarcate former subduction zones.

To the north, the CACC is separated from the continental Pontides of the southern Eurasian margin by the Izmir–Ankara–Erzincan suture zone (IAESZ) (Sengör and

*Corresponding author. Email: d.j.j.vanhinsbergen@uu.nl
Yilmaz 1981). Along the IAESZ, a northern branch of the Neotethyan Ocean subducted since at least the Early Cretaceous, as shown by HP metamorphic rocks, arc magmatism and deformation in the Pontides, and the evolution of a forearc basin along its southern margin (Tüysüz et al. 1995; Okay et al. 2001, 2006; Rice et al. 2006; Kaymakçı et al. 2009; Hippolyte et al. 2010; Okay et al. 2013). The CACC and overriding ophiolites started to collide with the Pontides in latest Cretaceous to Palaeocene time, shown by a transition from forearc to foreland basin evolution along the southern Pontide margin and formation of a northward convex orocline in the Pontides north of the CACC (Görür et al. 1984, 1998; Kaymakci et al. 2003, 2009; Meijers et al. 2010) (Figure 1).

Fringing the CACC to the south are belts of high-pressure, low-temperature (HP-LT) meta-sedimentary rocks, known as the older, structurally higher, and higher pressure Tavşanlı and the younger, structurally lower, and lower pressure Afyon zones (Okay et al. 1996; Okay and Tüysüz 1999; Dilek and Whitney 1997; Pourteau et al. 2010, 2013; Whitney et al. 2011). Based on ⁴⁰Ar/³⁹Ar mica ages, and unconformably overlying sedimentary rocks of these belts in western Turkey, a ca. 88–55 Ma history of burial and exhumation was inferred for these belts, with these processes younging towards deeper structural levels (Sherlock et al. 1999; Seaton et al. 2009; Pourteau et al. 2013). These data have been interpreted to infer a second Late Cretaceous subduction zone to the south of the CACC, commonly referred to as the ‘Intra-Tauride’ subduction zone (Sengör and Yilmaz 1981; Dilek and Whitney 1997; Dilek et al. 1999; Parlak and Robertson 2004; Clark and Robertson 2005; Barrier and Vrielynck 2008; Robertson et al. 2009; Sarıfakıoğlu et al. 2013).

The CACC itself exposes metasedimentary rocks that underwent regional Barrovian metamorphism following ophiolite obduction of Late Cretaceous age (Santonian–Turonian, ca. 90–85 Ma) (Erkan 1976; S ymin 1981; Göncüoğlu 1986; Erdogan et al. 1996; Yalınz and Göncüoğlu 1998). After ophiolite emplacement and regional metamorphism followed the intrusion of an Upper Cretaceous belt of plutons geochemically consistent with arc magmatism (Göncüoğlu 1986; Kadioglu et al. 2003, 2006; Köksal et al. 2004; Ilbeyli 2005; Boztuğ et al. 2007, 2009a). Exhumation of the CACC metamorphics is documented by geochronology and low-temperature thermochronology to occur ca. 75–60 Ma and was in several places shown to have been accommodated by low-angle extensional shear zones and detachment faults (Göncüoğlu 1986; Whitney et al. 2003; Köksal et al. 2004; Whitney and Hamilton 2004; Boztuğ and Joneskeere 2007; Boztuğ et al. 2007, 2009b; Gautier et al. 2008; Isik et al. 2008; Isik 2009; Lefebvre 2011; Lefebvre et al. 2011).

To unravel the plate tectonic configuration and geodynamic evolution of the Cretaceous–Palaeogene subduction–collision history of Anatolia, it is essential to
develop accurate kinematic reconstructions and, in particular, to restore the Late Cretaceous configuration of the CACC preceding its collision with the Pontides. Towards this end, Lefebvre et al. (2013) recently carried out a palaeomagnetic study of the granitoid belts in the CACC. Their results demonstrated that the massif contains three internally palaeomagnetically coherent blocks (the Akdağ, Kırşehir, and Niğde-Ağaçören massifs, Figure 2) that rotated relative to each other after latest Cretaceous cooling of the granitoids (Figure 3). Correcting for these rotations aligns the granitoid belts into a Late Cretaceous ~N–S trend and suggests that documented extensional shear zones and detachment faults accommodated ~E–W extension. This configuration is somewhat surprising, since Africa–Europe convergence in Late Cretaceous times occurred in a NNE–SSW direction (Torsvik et al. 2012); it would suggest that a highly oblique, N–S striking subduction zone may have existed that created E–W over-riding plate extension.

Lefebvre et al. (2013) proposed that the Central Anatolian block rotations were accommodated along two fault zones (Figure 3). One of these is the Savcıli thrust zone (Görür et al. 1998; Yürür and Genç 2006; Isik et al. 2014), which should accommodate several tens of
kilometres shortening to accommodate the palaeomagnetically determined ~30° rotation between the Kırşehir and Niğde–Ağaçören massifs (Lefebvre et al. 2013) (Figures 2 and 3). In this article, we test that prediction by studying the structural and stratigraphic evolution of the Ayhan–Büyükkışla basin that lies within the postulated Savcılı thrust zone (Figures 2 and 3) and aim to obtain constraints on the timing of central Anatolian rotational deformation.

The Ayhan–Büyükkışla basin is located adjacent to the Hırkadağ massif, along the northern edge of the counterclockwise rotated Niğde–Ağaçören massif. The basin exposes a folded and thrust faulted stratigraphy of volcanic, continental clastic, and shallow marine and lacustrine calcareous rocks, with a presumed Late Cretaceous to post-mid Eocene age range (Göncüoğlu et al. 1993; Köksal and Göncüoğlu 1997; Köksal et al. 2001). Here, we report the results from mapping of the stratigraphy and structure of the Ayhan–Büyükkışla basin, geochronological dating of its volcanic content, and cross-section restoration of its compressional history. We evaluate our results within the context of the Late Cretaceous–Palaeogene kinematic evolution of Central Anatolia and the subduction zone configuration inferred from that.

2. Geological setting
The oldest and tectonostratigraphically deepest rocks in the CACC comprise metasedimentary rocks with presumably Palaeozoic to Lower Cretaceous sedimentary protoliths (Göncüoğlu et al. 1992; Kocak and Leake 1994). These are tectonically overlain by the Central Anatolian Ophiolites, with Turonian–Santonian crustal ages (Seymen 1981; Yalnız and Göncüoğlu 1998; Floyd et al. 2000; Yalnız et al. 2000; Lefebvre et al. 2011), intruded by a regionally extensive suite of granitoids, with local gabbros and syenitoids (Figure 2) with published ages covering the ca. 95–75 Ma interval (Göncüoğlu 1986; Kadioglu et al. 2003; Whitney et al. 2003; Köksal et al. 2004; Boztuğ et al. 2007, 2009a; Lefebvre 2011). An 84.1 ± 0.8 Ma U/Pb monazite age from migmatites in the Kırşehir Massif was interpreted to date peak metamorphic conditions in the CACC (Whitney and Hamilton 2004). Because the granitoid suites did not experience the intense prograde to syn-peak metamorphic deformation characteristic of the CACC metamorphics, the pre-85 Ma magmatic ages may be incorrect (Lefebvre et al. 2013).

The tectonic causes of exhumation of the high-grade metamorphic rocks of the CACC remain only locally resolved, but are consistent with a key role of extensional denudation (Whitney and Dilek 1997; Gautier et al. 2002, 2008; Isik et al. 2008; Isik 2009; Lefebvre 2011; Lefebvre et al. 2011). Following initial postulations that extensional exhumation occurred in the Miocene (Whitney and Dilek 1997), subsequent evidence has demonstrated that the timing of extensional exhumation is mainly Late Cretaceous to perhaps Palaeocene in age (~75–60 Ma).
Extension-related deformation was overprinted by contractional deformation that developed in the localized zones of folding and thrust faulting, such as the Savcılı thrust zone, of which recent clay mineral dating in gouges suggested that it has been active between 46–40 and 29–22 Ma (Isik et al. 2014), and the Çiçekdağ syncline and Çiçekdağ basin that formed between 39 and 35 Ma (Gülyüz et al. 2013) (Figure 2).

To the southwest and southeast of the Ayhan–Büyükkışla basin, the study area of this article (Figure 4), metamorphic and plutonic rocks are exposed in the Hırkadağ massif and in the İdış Dağı block, respectively, exposing amphibolite-facies metasedimentary rocks, intruded by granodiorites and syenites (Whitney and Dilek 2001; Lefebvre 2011). In the southeast of the study area, near Göynük village, a thrust fault emplaces syenites of the İdış Dağı block over continental clastic sedimentary rocks that intercalate with mafic volcanics that were correlated to regionally occurring (Karahıdır) volcanics of a Late Cretaceous age (Aydn 1985; Göksen and Floyd 1987; Kara and Dönmez 1990; Göncüoğlu et al. 1993) (Figure 4). These mafic volcanics are probably magmatically cogenetic and consequently contemporaneous with the İdış Dağı syenite (Köksal et al. 2001). Clastic sedimentary rocks and volcanics with a presumed Late Cretaceous age are also exposed in the central part of our study area around Ayhan between the İdış Dağı and Hırkadağ blocks (Atabey 1989) (Figure 4). Overlying the continental clastic series in the Ayhan area are Eocene nummulitic limestones, dated as Lutetian (48.6–40.4 Ma in the timescale of (Gradstein et al. 2004)) based on their alveolina and nummulite content (Göncüoğlu et al. 1993), overlain by unfossiliferous (probably lacustrine) marls. Eocene limestones are widespread in central Anatolia and frequently unconformably cover exhumed metamorphic basement of the CACC (e.g. Göncüoğlu et al. 1991; Gülyüz et al. 2013).

The Eocene and older units in the Ayhan area are unconformably overlain by a series of folded and thrust faulted red fluvial conglomerates, covering the northern...
half of the study area around Büyükkışla (Figure 4). The age of the Büyükkışla basin fill is Lutetian or younger, as it covers the limestones, and is generally assumed to be Oligocene (Atabey 1989), but no independent age data exist. In the north of the study area (Figure 4), Eocene limestones and marls are exposed, and the northern contact between the Büyükkışla redbeds and Eocene limestones was previously mapped as an unconformity (Atabey 1989). The study area is bounded in the south by a normal fault that has Miocene (Tortonian) and younger volcanic tuff, commonly referred to as the Ürgüp Formation of the Cappadocian volcanic province, in its hanging wall (Atabey 1989; Mues-Schumacher and Schumacher 1996; Viereck-Goette et al. 2010). In places, subhorizontal tuffs unconformably cover all previous units in the study area.

3. Lithostratigraphy of the Ayhan–Büyükkışla Basin

The oldest part of the stratigraphy – termed the Yeşilöz Formation and intercalating ‘Karahıdır’ volcanics – is exposed in the Ayhan and Göynük area (Figure 4). The overlying nummulitic limestones and marls are assigned to the Mucur Formation. The unconformably overlying series of ~5 km of red conglomerates and sandstones define the Büyükkışla Formation.

3.1. Yeşilöz Formation

The Ayhan area exposes an ~4 km-thick stratigraphy with internal low-angle unconformities. The volcanics intercalating at the base of the Yeşilöz Formation were previously assigned to the ‘Göynük volcanoclastic olistostrome’ (Köksal and Göncüoğlu 1997), described as containing continental clastic sedimentary rocks, blocks of volcanics as well as blocks of İdış Dağı syenite. Our observations suggest, however, that such an amalgamation is restricted to a zone of ~50 m thickness below the İdış Dağı thrust fault, and that this lithology represents a tectonic mélangé related to post-depositional thrust faulting, not olistostromal processes. Immediately north of Göynük, a succession of intercalating purple and yellow lavas, stratified tuffs, conglomerates, and redbeds show that the volcanics form an integral part of the Yeşilöz Formation stratigraphy. In addition to the Karahıdır volcanics, we subdivide the Yeşilöz Formation into seven members that have been mapped separately to highlight the basin’s structure (Y1–7) (Figure 5).

Member Y1 consists of alternating dark-grey mudstone without fossils and lens-shaped sandstones. It only crops out in the central southern part of the basin with an exposed thickness of 250 m, tapering out to the W. It was probably deposited in a fluvial environment. The overlying Member Y2 consists of purple and red conglomerates and intercalated sandstones that can be

Figure 5. Facies diagram showing the regional and vertical relationships between the metamorphic basement of the Hırkadağ Block and the stratigraphy of the Ayhan–Büyükkışla basin.
traced all along the western and southern parts of the basin (Figure 4). Its thickness increases from ~600 m in the southeast to ~825 m in the southwest. The member consists of cross-bedded, fining upward sandstones, and up to 5 m-thick lenticular conglomerate beds that erode the underlying strata. The conglomerates are clast-supported, with sub-angular 10–50 cm clasts solely consisting of volcanic debris. Palaeocurrent directions in fluvid sandstones of this member are variable towards W and S (in present-day coordinates). The unit is interpreted as alternating braided fluvid and debris flow deposits constituting a continental clastic fan system. At the west bank of the Kızıloğlu river, andesite lavas intercalate with Member Y2, and we collected a sample (21-05) for \(^{40}\text{Ar}/^{39}\text{Ar}\) geochronology (Figure 5).

Member Y3 overlies the underlying purple conglomerates, and the contact between these units in the west of the basin shows an ~15° angular unconformity. Member Y3 consists of ~1200 m of sandstones and blue-grey mudstones without fossils. The member tapers out to the E, where it is exposed in small lenses only, and may interfinger with Member Y4. Its lower 150 m consists of regular alternations of ~30 cm-thick, yellow, carbonate-rich, fine- to medium-grained sandstones intercalated with 2–4 m-thick siltstone and claystone layers. The upper ~1000 m consists of alternating blue mudstone and very fine-grained yellow sandstone. Slump structures are common (Figure 6). The basal sandstone preserves syn-sedimentary normal faults, suggesting a roughly E–W direction of extension in their present orientation (Figure 6). The palaeoenvironment is interpreted as fluvial for the basal sandstones and lacustrine for the upper 1000 m.

Member Y4 consists of an ~625 m-thick sequence of red sandstones. In the west, the base of the succession consists of medium- to coarse-grained, thick-bedded (1–2 m) grey sandstones. Upwards, fine- to medium-grained ~5–15 cm-thick laminated sandstones occur that intercalate with 5–50 cm-thick red siltstones. In the east, the member consists of conglomerate, coarse sandstones, and siltstones. Conglomerates consist mainly of volcanic debris with ~5–10% granite and quartzite pebbles. The sequence is interpreted as deposited in a fluvial environment.

Member Y5 unconformably overlies Y4 with a low-angle unconformity and consists of 400 m of dark-red sandstones, thinning to 200 m eastwards. The sequence comprises one white-coloured sandstone of 20 m thickness, consisting of very coarse sandstones, followed by a poorly exposed sequence of fine laminated dark-red sandstones. The top of the formation is formed by intercalations of fine-bedded siltstone and claystone. The sequence is interpreted as a transition from a fluvial environment represented by the sandstones to a lacustrine environment represented by the siltstone and claystone.

Member Y6 is exposed in the eastern part of the basin and comprises ~100 m of 1–2 m-thick bedded limestones (mudstones), without macroscopically observable fossils. The sequence is interpreted as a lacustrine deposit laterally equivalent with the lacustrine rocks of Member Y5.

Finally, Member Y7 consists of 250 m of red sandstones and mudstone. The relationship with the underlying limestones is unknown, because the only contact with the limestones is a thrust fault. The sequence consists of 0.5–2 m-thick beds of coarse cross-bedded orange sandstones. The sequence is interpreted as fluvial.

3.2. Mucur Formation

The Mucur Formation overlies the Yeşilöz Formation with an ~5° angular unconformity and consists of two members (not specified as separate members on the map of Figure 4). Member 1 is exposed around Ayhan and comprises an ~200 m-thick sequence of 0.5–1 m thick, grain-supported beds of nummulites and alveolinae, and ~10 m-thick beds of pelecypoda and nummulites. These fossils clearly demonstrate a shallow marine environment. In Ayhan village, Göncüoğlu et al. (1993) assigned a Lutetian (48.6–40.4 Ma) age for these limestones. Member M1 is also found in the north and west of the study area, e.g. around Hacıbektaş and Avuç, where it is found in thrust fault contact above the Büyükkışla Formation. Around Avuç, the limestones are conformably overlain by Member M2, which consists of white to grey marls and mudstones with abundant organic matter fragments, alternating with sandstones and unfossiliferous limestones, generally of up to ~30 cm thick. The maximum observed thickness of Member M2 is ~300 m in the east of the study area. The member contains frequent large-scale (tens of metres in size) slumps. This sequence was previously suggested to be deep marine (Göncüoğlu et al. 1993), but the absence of marine fossils and the abundant presence of organic matter lead us to interpret a lacustrine palaeoenvironment instead.

3.3. Büyükkışla Formation

The Büyükkışla Formation is a monotonous, ~5 km-thick sequence of red siltstones with lenticular bodies of sandstone and conglomerate. The base of the stratigraphy is directly north and south of the exposures of the Yeşilöz Formation contains two additional members with different colours, convenient for structural mapping. Hence, we subdivide the stratigraphy into three members (B1–3).

The lowermost Member B1 overlies the Mucur and Yeşilöz Formations and the Hırkadağ metamorphic basement with an angular unconformity. In the south, the contact between Member B1 and the Yeşilöz Formation is a normal fault, and northeast of Ayhan, the Yeşilöz and Mucur Formations are probably thrust faulted over the
Büyükışla Formation (Figure 4). North of the Ayhan basin, Member B1 is ~450 m thick and consists of dark-red conglomerates and mudstones. The sequence contains a 150 m-thick conglomerate succession at the base made up of 5–30 cm sized pebbles of metamorphic rocks and granites. Pebble imbrication and cross-bedding indicate easterly directed palaeoflow (Figure 7). The basal conglomerates are followed by a 300 m-thick sequence of
5–20 cm-thick fine-grained sandstone beds intercalated with 5–50 cm-thick lignites, which are locally mined. We have been unable to derive pollen from these lignites for age dating. The sequence is interpreted as an alternation of braided fluvial and debris flow deposits. Upwards, the palaeoenvironment was dominated by fluvial deposits and marshes.

Member B2 consists of a 300 m-thick sequence of olive-green sandstones and mudstones, with a 100 m-thick sandstone at the base. It is succeeded by 200 m of alternating ~20 cm-thick fine-grained sandstone beds and 0.5–2 m-thick claystone layers. Lenticular sandstone bodies are erosive, 5–10 m thick, and 20–30 m wide. Cross-beds in the sandstone layers indicate westerly palaeoflow (Figure 7). Member B2 is interpreted to reflect a fluvial depositional environment, with channelled sandstone bodies and claystone-dominated overbank deposits.

Member B3 is not further subdivided and comprises the top ~4 km of the succession. It is dominated by orange fluvial sandstones, mudstones, and conglomerates, including matrix-supported conglomerate layers of up to 3 m thickness. These layers have moderately sorted, semi-rounded pebbles ranging in size from 4 to 10 cm. The pebble content is diverse and in the lower part of the sequence consists mainly of volcanics and some reworked sandstone, but higher in the sequence (near Sarlılar) also fragments of nummulitic limestone were found. Sandstone layers are typically ~20 cm thick, with grain sizes between medium and very coarse sand. At the base of the succession, pebble imbrication and cross-beds indicate E-directed palaeoflow (Figure 7). The unit is interpreted as an alternating braided fluvial and debris flow deposit.

4. \(^{40}\text{Ar}/^{39}\text{Ar}\) geochronology

Plagioclase was separated from sample 21-05 for \(^{40}\text{Ar}/^{39}\text{Ar}\) geochronology. Figure 8 displays the spectrum and inverse isochron diagrams. Statistics on both the spectrum and the inverse isochron indicate some minor disturbance of the Ar isotope system. We define a plateau according to the following requirements: at least three consecutive steps, overlapping at the 95% confidence level, together comprising at least 50% of total \(^{39}\text{Ar}\) and mean square of weighted deviates (MSWD) less than the two-tailed Student T (Stud-T) critical value. We use the weighted York-2 method to calculate the inverse isochron results, with statistically valid isochrons having a MSWD value less than the two-tailed F-test critical value. For sample 21-05, a weighted mean age of 72.06 ± 1.78 Ma (2σ) was determined (Figure 8) for 81.83% of the cumulative \(^{39}\text{Ar}\). The ages and uncertainties for the three steps included in the calculation almost overlap at the 2σ level, but with a MSWD of 5.854 and a Stud-T value of 4.303 they do not constrain a true plateau. Steps 1–4, representing 91.61% of the cumulative \(^{39}\text{Ar}\), yield a statistically valid (i.e. MSWD of 2.888 below the F-test value of 2.997) inverse isochron age of 72.11 ± 1.46 Ma (2σ). Again, some minor disturbance of the Ar isotope system is indicated by the \(^{40}\text{Ar}/^{36}\text{Ar}\) ratio, which at 254.48 ± 22.87 (2σ) is lower than the atmospheric ratio. The weighted mean plateau age and the inverse isochron age nevertheless completely overlap.

5. Structure

5.1. Present-day structure

The angular unconformity between the Büyükkışla Formation and the underlying formations (Figure 4) suggests that the Yeşilöz and Mucur Formations have experienced at least one deformation phase more than the Büyükkışla Formation. Therefore, we first describe the deformation accommodated in the Büyükkışla Formation and then summarize the deformation in the area around Ayhan that exposes the older formations.
A cross-section through the western part of the study area is shown in profile A of Figure 9. The Hırkadağ massif is bounded to the south by the Miocene and younger Kızılrmak normal fault, with Cappadocian volcanics in its hanging wall (Göncüoğlu et al. 1993; Toprak 1994). To the north, the Büyükkışla Formation unconformably overlies metamorphic rocks of the Hırkadağ massif and has a gentle N-dipping stratigraphy (Figure 10a). To the north, this stratigraphy is deformed into the 15 km-wide asymmetric S-vergent ‘Killik’ syncline (Figure 10b). North of the hinge of the syncline, scattered outcrops in a river valley between Killik and Avuç expose redbeds with gradually steepening S-dipping bedding. Previously, these have been mapped as the Yükseli Formation with volcanic ash deposits with an
inferred late Miocene–Pliocene age (Atabey 1989), but the gradual steepening bedding and the similarity with lithologies observed in the northern limb led us to interpret this as the Büyükkışla Formation. Subhorizontal thin volcanic ash deposits such as those mapped by Atabey (1989) are indeed present in the map area and are in place preserved as a thin horizontal veneer unconformably covering tilted Büyükkışla Formation rocks. The northern subvertical to slightly overturned limb (Figure 10c), between Hacibektaş, Avuç, and Belbarak, consists of coarse redbed sandstones, with reworked alveolina fossils, derived from the Mucur Formation. This shows that these rocks are not part of the pre-Lutetian Yeşilöz Formation, as previously mapped (Atabey 1989), but of the post-Lutetian Büyükkışla Formation. The northern part of the basin is poorly exposed, but isolated outcrops consistently show subvertical to overturned beddings, with three consecutive outcrops showing opposing younging directions. We interpret this as evidence for parasitic, isoclinal folding in the vertical to slightly overturned limb of the syncline (Figure 9). The syncline is overthrust southwards along a laterally continuous WNW–ESE trending, NNE-dipping thrust fault (the Avuç–Altınparan thrust fault, Figures 4 and 9), carrying Eocene limestones and lacustrine series of the Mucur Formation in its hanging wall. In the west of the study area in the village of Hacibektaş, the hinge of the Killik syncline is overthrust by basement schists that are unconformably covered by the Eocene Mucur Formation. These schists and Eocene limestones form a klippe (Figure 9). We interpret this klippe as an outlier of the hanging wall of the Avuç–Altınparan thrust fault system.

The surface trace of the Avuç–Altınparan thrust fault converges eastwards with the axis of the Killik syncline. Around the village of Sarilar, the northern limb of the syncline is entirely covered by the hanging wall of the Avuç–Altınparan thrust fault. South of Sarilar, another small klippe of Eocene Mucur limestones overlies the rocks of the southern, N-dipping limb of the Killik syncline. To the east of Büyükkışla, the N-dipping limb of the Killik syncline is further deformed into the northward plunging Sarilar anticline. To the west, this anticline is bordered by a less well-developed syncline, and evidence for E-W shortening disappears westwards. To the east, the Sarilar anticline is bordered by a syncline that is overthrust with a westward component by essentially non-metamorphosed, folded, and recrystallized ‘Gözsu Tepe’ limestones (Figure 4) with a folded but well-recognizable bedding that appear to be of much lower metamorphic grade than the basement of the Hırkadağı massif. These limestones certainly do not belong to the Ayhan–Büyükkışla stratigraphy (Figure 4). The thrust fault carrying the Gözsu Tepe limestones is at a structurally lower level than the continuous Avuç–Altınparan thrust fault. The thrust fault at the base of the Gözsu Tepe limestones, directly above the overthrust Büyükkışla redbeds, exposes a brittle mélange containing intensely brecciated,
foliated marbles, as well as oncolith-bearing limestone blocks exposed in a small quarry southeast of Sarlılar.

The surface trace of the thrust fault along the western edge of the Gözsu Tepe limestones disappears to the S. The Gözsu Tepe thrust sheet (Figure 4) dips eastwards, and E of the road from Özkonak to Altipinar it is unconformably overlain by a several 100 m-thick sequence of lacustrine marls with turbidites and limestones of the Mucur Formation (Member M2). These are deformed by S- and N-dipping thrust faults (profile B of Figure 9). This profile was documented along a well-exposed river valley between Özkonak and Altipinar (Figure 4). The northern part of this profile is dominated by southward thrust faults, which formed structurally below the Avuç–Altipinar thrust fault. To the S, however, the dominant thrust direction is northwards. At the southern end of the exposed profile, a thin (~25 m thick) sliver of Gözsu Tepe limestones and brecciated foliated marbles thrust over Mucur Formation marls and turbidites with slump structures. This sliver of Gözsu Tepe limestones, in turn, is overthrust in the south by Büyükkışla Formation red conglomerates from the southern limb of the Killik syncline (Figure 9). The valley between this river section and the exposures of İdiş Dağı is unexposed, but the red colours of the fields suggest the presence of the Büyükkışla Formation. To the south of the village of Göynük, ~30° N-dipping rocks are exposed to the lower members of the Yeşilöz Formation including mafic volcanics. Towards the S, the bedding becomes steeper, and is overturned near the contact with the metamorphic and igneous rocks above the İdiş Dağı thrust fault, thus forming a major N-vergent footwall syncline. Using the mapped trace of the İdiş Dağı thrust fault combined with the topography, we construct an ~20° S-dipping thrust fault, which becomes subhorizontal to the north. As mentioned before, the thrust fault zone exposes an ~50 m-wide tectonic mélange of hanging wall and footwall rocks.

The structure of the Yeşilöz Formation around Ayhan is more complex than that of the overlying Büyükkışla Formation to the north, as illustrated by Figure 11. Strata in the eastern part of the basin are deformed along E–W striking, N-verging folds, and thrust faults, which can be traced eastwards to the region of Göynük, below the İdiş Dağı thrust fault (Figures 4 and 9). Towards the west, fold and thrust faults disappear, and the bedding strike changes to NNE–SSE. Importantly, the northernmost thrust fault in the Ayhan area, carrying Eocene limestones of the Mucur Formation (Member M1) in its hanging wall, is unconformably covered to the northwest of the village of Ayhan by northward tilted sedimentary rocks of Member B1 of the Büyükkışla Formation. Towards the east, however, limestones of the Mucur Formation (Member M1) are thrust over the Büyükkışla Formation. Folding and thrust faulting must therefore have started prior to the deposition of the Büyükkışla Formation and must have continued until after its deposition, with the Büyükkışla Formation representing syn-compressional deposits. We illustrate the present-day structure of the basin along two cross-sections C and D (Figures 4, 9, and 11).

In the south of the Ayhan area, an ~E–W trending ridge occurs that exposes Karahıdır volcanics intercalating with sedimentary rocks of the Yeşilöz Formation. In the southwest, this ridge is emplaced northwards along an ~E–W trending thrust fault over rocks of Members Y1 and Y2. To the east, however, this thrust fault steps southwards, thrusting İdiş Dağı syenites over the Karahıdır volcanics. There, Karahıdır volcanic rocks are separated from

Figure 10. Field photographs of the limbs (a, c) and hinge (b) of the Killik syncline that deformed the Büyükkışla Formation.
Members Y1 and Y2 by a N-dipping normal fault (Figure 6). Sedimentary rocks of the basal Yeşilöz Formation thicken and taper towards this normal fault, showing it was active during sedimentation (Figure 6). To the south of the ridge of Karahıdır volcanics, red conglomerates and green-yellow sandstones of Members B1 and B2 of the Büyükkışla Formation are found. These dip northwards and are separated from the ridge by a normal fault. We find no evidence of thickening of the Members B1 and B2 towards this normal fault, which suggests that it is a post-sedimentary fault.

Thrust faults and folds dominate the present-day structure of the central and eastern part of the Yeşilöz Formation in the Ayhan area (Figure 12). The eastern profile C (Figure 12) shows the most intensely deformed part. In the south, this profile contains the normal fault between Karahıdır volcanics and Member Y2, and towards the north, a series of N-vergent thrust faults deforms the stratigraphy, associated with a series of hanging wall anticlines and footwall synclines.

The western profile D shows a very different structure. Thrust faults are absent and the cross-section is dominated by NE-ward-tilted beds exposing the entire Yeşilöz Formation. The contact of the sedimentary rocks with the Hırkadağ Massif to the west is a high-angle (up to ~75°) normal fault, described here as the Hüyük Tepe normal fault zone. The Hüyük Tepe normal fault zone comprises two major normal faults in an en-echelon configuration connected via a relay ramp (Figure 4). The presence of young travertine deposits suggests that these faults have experienced some recent activity (Göncüoğlu et al. 1993).

To the east of the Hüyük Tepe fault, beds of Member Y2 show drag folding along the normal fault, with bedding orientations that turn near parallel (up to ~75°) to the fault plane. The strike of the bedding of the basal Yeşilöz Formation is oblique to the strike of the Hüyük Tepe fault, striking ~20° more westerly than the fault. Away from the fault, beds of Member Y2 are mildly folded, with bedding first decreasing to an ~20° NE-dipping orientation, followed by steepening to ~50° below an angular unconformity with Member Y3. The angular relationship between Members Y2 and Y3 varies along this unconformity, with a steeper NE-ward tilt of the lower member in the north, and a shallower tilt in the S. We will discuss the implication of this relationship in the next section.

The Hüyük Tepe fault, which must have a vertical displacement equivalent to at least the total stratigraphic thickness of the Yeşilöz Formation, i.e. ~3–4 km, cannot be traced into the Büyükkışla Formation. Although the direct contact of the Büyükkışla Formation and the Hüyük Tepe fault cannot be observed due to lack of exposure, we note that both the northeastward-tilted
western exposures of the Yeşilöz Formation and the Hırmadağı basement are unconformably covered by the Büyükkışla Formation. There is no evidence for a major normal fault within the Büyükkışla Formation along the northeastward projection of the Hüyük Tepe fault. The bulk of Hüyük Tepe fault displacement therefore predates the deposition of the Büyükkışla Formation.

5.2. Restoring post-middle Eocene shortening

To quantify the amount of post-middle Eocene shortening in the study area, and to restore the Yeşilöz Formation in its configuration at the inception of folding, we have restored the cross-sections A–D described above (Figures 9, 11, and 12). Cross-section restoration was performed via line-length balancing, using the sinuous bed method of Dahlstrom (1969). The deformed state cross-section is constructed assuming parallel folding for folds directly related to faulting (such as the Hüyük Tepe hanging wall syncline and the Killik footwall syncline). For these folds, the axial plane is roughly parallel to the fault. For folds that are not directly related to faulting, concentric folding is assumed. The hinge planes are constructed parallel to the bisectrix of two bedding planes, according to the methods of Suppe (1983). In the restoration, conservation of area (Dahlstrom 1969) is applied. All cross-sections are solely based on interpretations of the surface geology. The section is restored to the base of the Büyükkışla Formation.
Based on the surface geology, the subvertical northern limb of the Killik syncline appears to be thicker than the southern limb. Here we consider two possible end-member scenarios for this thickening. In the first scenario, thickening is assumed to be the result of a northward increase in stratigraphic thickness, and no shortening in the north limb is assumed.

In the second scenario, thickening is assumed to be tectonic in nature, caused by shortening of the northern limb by isoclinal folding. In cross-section A (Figure 9), the hinge (fold axial) plane of the Killik syncline is more or less planar, which results in a thickened northern limb. This may be due to tectonic thickening, consistent with the evidence for meso-scale isoclinal folding. In the restoration, the northern limb is thinned to the same thickness as the southern limb. To conserve volume, the northern limb is elongated in the restored section. To construct the lower part of cross-section B (İdış Dağ–Altınpınar), cylindrical folding of the Killik syncline is assumed. This syncline is projected into this cross-section. Here, we also consider the two possible end-member scenarios.

Balanced sections A and B provide minimum shortening estimates between ~40% and ~50% (between 14.5–17.1 km and 24.3–26.9 km of shortening, respectively, Figure 9). Restoration of cross-section C across the Yeşilöz Formation to the East of Ayhan reveals a minimum shortening of ~2 km (~30%) (Figure 11). Because the western part of the basin has no significant shortening component, this part of the basin is most likely close to the pre-compressional orientation of the basin relative to the Hırkadağ massif. If we correct for the eastward increasing shortening using the estimate of profile C, it follows that the E–W trend of the central and eastern part of the Ayhan basin is the result of a shortening-related, local counterclockwise vertical axis rotation around a pole in the southwest of the basin.

In its pre-compressional configuration, the N-dipping normal fault in the southeast of the Ayhan basin (i.e. at the southern end of profile C) would rotate backwards into a flat-lying structure with a top-to-the-NE sense of shear. Restoring the basin to Member Y5 reveals that the intrabasinal angular unconformities between Members Y2 and Y3 and Y4 and Y5 result from progressive SW-ward tilting of the stratigraphy towards the normal fault in the south of the profile (Figure 11). This is consistent with evidence for syn-sedimentary taping of Member Y2 adjacent to the fault (Figure 6) and shows that the Ayhan basin, during deposition until at least Member Y5, was extensional.

We also restore section D into its pre-compressional configuration. Although this section underwent only minor internal deformation during the compression episode, the unconformably covering Büyükkışla redbeds are consistently tilted by ~35° to the north. Part of this tilt might result from footwall uplift associated with the upper Miocene and younger normal faults to the south of the Hırkadağ massif and south of the Ayhan basin, and in part might be due to loading along the Avuç–Altınpınar thrust fault. Correcting the bedding measurements from the western Ayhan basin for this tilt leads to a decrease of the dip of the Hüyük Tepe normal fault to ~50°, and the corrected strike of the Ayhan bedding is oriented parallel to the Hüyük Tepe fault. This strengthens the interpretation that the Hüyük Tepe normal fault predates the Büyükkışla redbeds and their tilting and governed at least part of the deposition of the Ayhan basin stratigraphy.

6. Discussion

6.1. Post-mid-Eocene Savcılı thrust zone accommodating block rotations

Our results demonstrate that after Lutetian deposition of the Mucur Formation, and during (or before and after) the deposition of the Büyükkışla Formation, the Ayhan–Büyükkışla basin was shortened by ~40–50%, over a minimum amount of 24–27 km in section B (Figure 9). We will discuss below the implications of this finding for the role of the fault zone that was postulated to accommodate relative vertical axis rotations between the Kırshehir and Niğde-Ağaçören massifs of the CACC (Lefebvre et al. 2013). First, however, we discuss the complicated structure to the northeast of Büyükkışla around Sarlar (Figure 4), where N–S trending, N-plunging anticlines, and synclines overprint the Kilik syncline to the west of the Gözsu Tepe limestone thrust sheet.

The Gözsu Tepe thrust fault has a lower structural level than Avuç–Altınpınar thrust fault (Figure 9) and brings deeper rocks of the tectonostratigraphy to the surface. We interpret the western faulted boundary of the Gözsu Tepe limestone sheet as essentially a sidewall ramp. The Mucur Formation lacustrine sequences (Member M2) unconformably overlying the Gözsu Tepe limestones are not only overthrust from the N, but also from the S, where in profile B we find Gözsu Tepe limestones and associated brecciated foliated marble thrusting northwards over Member M2 (Figure 9). We therefore explain the N–S trending Sarlar anticline and the westward thrust fault of the Gözsu Tepe limestones over the Büyükkışla redbeds to result from a small and local counterclockwise rotation of the Gözsu Tepe thrust sheet around a pivot point in the south, where southward motion of the thrust sheet is blocked by top-to-the-N thrust faults. Such a minor counterclockwise rotation would induce a local space problem in the area of Sarlar, inducing an E–W-directed component of shortening on the Gözsu Tepe sidewall ramp that formed the observed thrust faulting and folding (Figure 13). We consider this deformation of only local importance and focus on the N–S shortening component in the remainder of this discussion.

Lefebvre et al. (2013) postulated that the palaeomagnetically documented 29.0 ± 4.5° rotation difference
between the Kırşehir and Niğde–Ağacören massifs was accommodated in the Savcıli thrust zone between the Hıırkadağ massif and the Kırşehir massif (Figures 2 and 3). This would require ~40–60 km of N(NE)–S(SW) shortening to be accommodated within the Savcıli thrust zone, alongside a relatively minor (~10 km) left-lateral strike-slip component.

Accommodating this shortening in the ~30 km-wide zone between Hıırkadağ and Kırşehir massifs, the southern part of which is occupied by the Ayhan–Büyükkuşla basin,
would require ~50–65% shortening. This is reasonably consistent with the ~50% shortening we restored in section B, but requires that the poorly exposed valley between the Avuç–Altınparı thrust fault and the Mucur massif (Figure 2) underwent similar or somewhat higher shortening. This valley is too poorly exposed to map in detail, but scarce outcrops expose steeply tilted redbeds and Mucur Formation limestones, suggesting that the fold–thrust zone extends further northwards than our study area. Given the similarity between the restored shortening percentages in the Ayhan–Büyükışla basin and the predicted values for the Savcili thrust zone by Lefebvre et al. (2013), we consider their hypothesis viable that the Kırşehir and Niğde–Ağaçören massifs represent more or less rigid blocks in Cenozoic time, whose relative rotation is accommodated in the Savcili thrust zone.

Our documentation shows that the age of the shortening in the Ayhan–Büyükışla basin is post-Lutetian, which also constrains the age of the block rotation between the Kırşehir and Niğde–Ağaçören massifs as younger than the Lutetian. Kaymakçı et al. (2009), Meijers et al. (2010), and Lefebvre et al. (2013) argued that deformation of the Pontides and Central Anatolian compression started shortly after the initiation of collision of the CACC with the Pontides in the Palaeocene. Our finding suggests that the compressional deformation and block rotations of central Anatolia occurred during a protracted period of time. This is consistent with evidence for late Eocene (~39–35 Ma) N–S shortening in the Çiçekdağ basin (Gülyüz et al. 2013) and contraction in the Çankırı basin continuing into Oligocene time (Kaymakçı et al. 2009) and late Eocene or younger shortening in the Ulukışla basin to the south of the CACC (Clark and Robertson 2005). Shortening must be older than the formation of the N–S extensional Kızılirmak normal fault, which presumably occurred in late Miocene time. To the south of the CACC, the Adana basin records early Miocene ~NW–SE extension in the forearc of the Cyprus subduction zone, suggesting that since this time the overriding plate is in (mild) extension (Aksu et al. 2005; Burton-Ferguson et al. 2005); central Anatolian N–S shortening and block rotations, being governed by Africa–Europe convergence, most likely ended before the early Miocene.

6.2. Late Cretaceous extension: relation to the exhumation of the CACC metamorphics?

During the inception of sedimentation, at least 72.11 ± 1.46 million years ago as shown by our dating of a lava at the base of the stratigraphy (Figure 8), the Ayhan–Büyükışla basin was an extensional basin. This is shown by the intra-basinal syn-sedimentary normal fault separating the ridge of Karahur volcanics from higher parts of Member Y2 of the Yeşılöz Formation in the southeastern part of the Ayhan area (Figures 4 and 6c), the intra-basinal unconformities that result from southward tilting of the stratigraphy towards this fault (Figure 11), and smaller syn-sedimentary normal faults preserved within the Yeşılöz Formation (Figure 6b). In addition, our mapping of the stratigraphy in the hanging wall of the Hüyük Tepe normal fault shows an intraformational unconformity between Members Y2 and Y3, the lower unit being folded as a hanging wall syncline–anticline pair consistent with activity of the Hüyük Tepe normal fault. Restoring the orientation of the presently top-to-the-NE Hüyük Tepe normal fault for the ~35° counterclockwise vertical axis rotations recorded in the Ağaçören plutons (Lefebvre et al. 2013) (Figure 3) suggests that Late Cretaceous extension direction was E–W directed.

On a regional scale, exhumation of the CACC occurred until ~65–60 Ma (Boztuğ and Jonckheere 2007; Boztuğ et al. 2007, 2009b; Gautier et al. 2008; Isik et al. 2008; Isik 2009; Lefebvre 2011; Lefebvre et al. 2011), i.e. contemporaneous with the early stages of sedimentation of the Ayhan–Büyükışla basin. Where documented, extension directions of syn-exhumation shear zones, corrected for vertical axis rotations, also indicate an E–W extension direction. We therefore postulate that the extension documented in the Ayhan–Büyükışla basin is associated with regional exhumation of the CACC metamorphics.

Lefebvre (2011) documented in the eastern part of the Hırkadağ massif a ductile-to-brittle, top-to-the-NE extensional detachment, separating conglomerates that are similar in colour and detrital content to Member Y2 from exhumed basement. Lefebvre (2011) dated a granodiorite in the Hırkadağ massif with U/Pb on zircon at 77.30 ± 0.39 Ma and obtained biotite and K-feldspar cooling ages of an amphibolite sample from the Hırkadağ massif of 68.8 ± 1.4 Ma and 67.0 ± 1.2 Ma (Figure 5), respectively, showing that the Hırkadağ basement was not yet at the surface when sedimentation in the Ayhan–Büyükışla basin commenced. This is consistent with the absence of metamorphic and granitic debris in the lower Members (Y1–Y2) of the basin’s stratigraphy. The early stages of the basin’s history, at least during the deposition of Members Y1 and Y2, may thus be viewed as a supradetachment basin setting. The Hüyük Tepe normal faults may then be explained as high-angle normal faults within the same extensional system that cut the back-tilted detachment at a late stage during the exhumation history. An analogue may be formed by the the upper Miocene–Pliocene Alaşehir and Büyükk Menderes detachment faults in the Menderes Massif of western Turkey, where a lower to middle Miocene supradetachment basin stratigraphy (Sen and Seyitoğlu 2009; Oner and Dilek 2011, 2013) was crosscut by high-angle normal faults in the late stages of extension following the bulk of exhumation of the underlying metamorphic rocks, folowed by continued deposition in the Büyük Menderes

6.3. Implications for the Cretaceous subduction configuration of Central Anatolia

Based on the distribution of the plutons in the CACC with geochemistries inferred to reflect arc volcanism (Ilbeyli 2005; Kadoğlu et al. 2006) and the presence of contemporaneous HP-LT metamorphic rocks to the west of the CACC (e.g. Okay et al. 1996; Pourteau et al. 2010; Whitney et al. 2011), Lefebvre et al. (2013) suggested that in Late Cretaceous time the CACC was located above an E-dipping subduction zone that created E–W overriding plate extension. The Late Cretaceous E–W restored extension direction of the Ayhan–Büyükçüla basin (Figure 3) is consistent with this reconstruction. As discussed above, compression in the Ayhan–Büyükçüla basin occurred during central Anatolian deformation that Lefebvre et al. (2013) related to the collision of the CACC with the Pontides after the arrest of oceanic subduction of Neotethyan oceanic lithosphere below the Pontides.

During the Late Cretaceous, (at least) two subduction zones must have been active in the Eastern Mediterranean region, as has been frequently postulated before (e.g. Moix et al. 2008). Our kinematic analyses confirm the reconstructions of Lefebvre et al. (2013) that argue that the intra-Tauride subduction zone to the west of the CACC was ~N–S striking and must thus have been highly oblique.

Our study is only a first step into a quantitative kinematic restoration of the Cretaceous subduction configuration of Turkey, and future work should further quantify shortening, extension, and rotation in the Tauride fold–thrust belt and the Tuz Golu and Sivas Basins. In Figure 14, however, we provide one possible subduction zone geometry and evolution for the Eastern Mediterranean region during Cretaceous to Eocene time in Figure 14 that fulfils the constraints provided in this article, those for western Turkey and the Aegean region summarized in reconstructions of van Hinsbergen et al. (2005, 2010), van Hinsbergen and Schmid (2012), and Gaina et al. (2013), and for eastern Anatolia as summarized by Pourteau et al. (2010).

A northern, E–W trending, N-dipping subduction zone existed below the Pontides and had been active since at least Early Cretaceous time (Okay et al. 2013). Westwards, this subduction zone connected to the subduction zone along the southern Rhodope that had existed since at least some 100 million years ago (van Hinsbergen et al. 2005; Jolivet and Brun 2010). To the south of the Pontides, Cretaceous ophiolites are found in tectonic contact above all tectonic units of the Taurides, the Afyon
zone, the Tavşanlı zone, and the CACC (e.g. Dilek and Furnes 2009). Where metamorphic soles are found below the Anatolian ophiolites, these are ~90–95 million years old (Čelik et al. 2006), which is widely interpreted to shortly post-date initiation of a subduction zone below the oceanic lithosphere of which these ophiolites are relics (e.g. Isik et al. 2008; Isik 2009; Sarıfakıoğlu et al. 2013). Shortly after subduction initiation, continental crust was underthrusted in western Turkey (the lower nappes of the Tavşanlı zone, Plunder et al. 2013) and in central Turkey (CACC) (e.g. Boztuğ et al. 2009b). The 85 Ma and even older, undeformed granitoids that intrude the CACC and overlying central Anatolian ophiolites demonstrate that within 10 million years after subduction initiation, rocks of the CACC had been underthrust below and accreted to the overlying oceanic lithosphere. When corrected for Cenozoic rotations (Lefebvre et al. 2013), an intense and persistent NNE–SSW-trending, syn-regional metamorphic stretching lineation on shallowly inclined pervasive foliation associated with top-to-the-SSW sense of shear is prominent across the entire CACC (Lefebvre 2011). These deformation fabrics predate granitoid intrusion and are parallel and hence likely the result of the north-northeastward underthrusting of the CACC below the central Anatolian ophiolites.

The palaeomagnetic reconstruction of Lefebvre et al. (2013) shows that the CACC had a N–S lenticular orientation after its underthrusting below and accretion to the central Anatolian ophiolites, and became intruded by a N–S-trending volcanic arc. Consequently, those authors inferred that a N–S-trending subduction segment must have existed in central Anatolia. The widespread presence of ophiolites in western Turkey shows that an intra-oceanic subduction zone must also have been present in western Turkey, and reconstructions of van Hinsbergen et al. (2010) and Plunder et al. (2013) advocate that this intra-oceanic subduction zone was E–W trending. Similarly, a roughly E–W-trending intra-oceanic subduction zone is required north of the eastern Taurides to allow regional ophiolite emplacement there. We hence suggest that a strongly curved or discretely segmented Late Cretaceous subduction zone existed in central Anatolia, with a highly oblique N–S-trending subduction segment below which the CACC became underthrust. This geometry may be comparable to the margin of Tibet and Sundaland, with a highly oblique N–S-trending subduction zone along the Burma block and the Andaman Sea connecting sub-orthogonal E–W-trending subduction zones of southern Tibet and Sumatra–Java (e.g. Hall 2002, 2012; van Hinsbergen et al. 2011).

Extensive shear zones and detachments in the CACC (Gautier et al. 2008; Isik et al. 2008; Isik 2009; Lefebvre 2011; Lefebvre et al. 2011, 2012) and the early stages of infill of the Ayhan basin demonstrate that the CACC was affected and exhumed by E–W extension in latest Cretaceous time. Arc magmatism remained active during this stage (e.g. Lefebvre 2011; Lefebvre et al. 2011; and this paper) and subduction occurred westwards of the CACC, burying the Afyon zone (e.g. Pourteau et al. 2010, 2013). E–W extension in the overriding plate that exhumed the CACC then likely reflects westward trench retreat of the N–S-striking central Anatolian subduction segment.

Around 65 Ma, the CACC and overlying ophiolites collided with the Pontides as a result of ongoing convergence accommodated by the northern subduction zone. This collision initiated a phase of N–S shortening in central Anatolia causing the formation of a northward convex orocline (Meijers et al. 2010) and intense thrusting in the central Pontides (Espurt et al. 2014) and the Çankırı Basin (Kaymakçı et al. 2003, 2009). To the south, N–S contraction led to the break-up of the CACC into three massifs that rotated and moved relative to each other (Lefebvre et al. 2013), reflected by Eocene to Oligocene folding and thrust faulting in the Savçlı thrust zone (İsk et al. 2014) and the Ayhan–Büyükükışla Basin (this study), the Çiçekdağlı basin (Gülyüz et al. 2013), and to the south, in the Ulukışla Basin (Göörü et al. 1998; Clark and Robertson 2005). During the later stages of this episode, ongoing N–S convergence to the east of the CACC became accommodated by the Ecemis left-lateral strike-slip fault at its eastern border (Jaffrey and Robertson 2001). To the west and south, the Taurides were accreted structurally below the Afyon zone, which became widely exhumed in central and western Turkey, perhaps as a result of ongoing trench retreat of the central Anatolian subduction zone segment. We tentatively postulate that a relict of the N–S striking, E-dipping slab that dominated the Cretaceous evolution of the CACC may still exist today: such a feature is imaged by seismic tomography below the modern Isparta Angle in southwest Anatolia (de Boorder et al. 1998; Biryol et al. 2011).

7. Conclusions

The CACC underwent Late Cretaceous regional Barrovian metamorphism following ophiolite obduction. Previously documented extensional detachment histories suggest that extensional exhumation occurred until latest Cretaceous times. This was followed by latest Cretaceous to Palaeocene inception of collision of the CACC with the Pontides. Recent palaeomagnetic data (Lefebvre et al. 2013) demonstrated that the CACC was subsequently fragmented into three massifs (Akdağ, Kırşehir, and Niğde–Ağaçören massifs), which rotated relative to each other. In this study, we test whether an ~30° vertical axis rotation difference between the Kırşehir and Niğde–Ağaçören massifs may have been accommodated by ~40–60 km of shortening (50–65%) in the region between the Hırdadağ massif in the south (belonging to the Niğde–
Ağaçören massif) and the Mucur massif in the north (belonging to the Kirşehir massif).

We studied the Upper Cretaceous to post-middle Eocene Ayhan–Büyükçülüşla basin, located adjacent to the Hırkadağ massif in the central part of the CACC. The basin is subdivided into three formations, based on their stratigraphy and structure, each of which represents subsequent stages in the tectonic evolution of the basin. The results of this study show that the Ayhan–Büyükçülüşla basin records both Late Cretaceous extension and post-middle Eocene (Lutetian) compression.

Deposition started in an extensional basin around 72.11 ± 1.46 (40Ar/39Ar plagioclase age on andesite at the base of the stratigraphy). Restored for post-Cretaceous rotations, we restore an E–W extension direction, consistent with regional constraints. The extensional basin sedimentary rocks were unconformably covered by mid-Eocene limestones and redbeds, followed by intense folded and thrust faulting. Two balanced cross-sections in the study area give ~50% of post-mid-Eocene ~N–S shortening, consistent with the predicted value from the rotation analysis. We thus confirm predictions of a palaeomagnetic-based reconstruction of central Anatolia, which implied that the well-documented Late Cretaceous intra-Tauride subduction zone to the west of the CACC was N–S striking and E-dipping, creating E–W extension in the overriding plate. Given Africa–Europe convergence directions at that time, this subduction zone must have been highly oblique. Our study is a first step towards quantitative kinematic restorations of subduction zone configurations and evolution of the Eastern Mediterranean in Cretaceous time.

Acknowledgements

We thank Demir Altın, Rob Scaife, Henk Brinkhuis, and Appy Slujs for analysing samples for fossil content (which unfortunately were barren). Maarten Zeylmans-van Emichoven is thanked for his assistance with the GIS software. We thank Paul Umhoefer and an anonymous reviewer for constructive comments.

Funding

E.L.A. acknowledges the funding from the Molengraaff Foundation. E.L.A., R.L.M.V., and N.K. acknowledge the financial support from the Darius Foundation. D.J.J.v.H. was supported by ERC Starting Grant 306810 (SINK) and a Dutch Science Council VIDI grant.

References

NW Turkey: Contributions to Mineralogy and Petrology, v. 137, p. 46–58.

Appendix

Analytical data of the 40Ar/39Ar dating of andesite from the base of the Ayhan stratigraphy (21-05) (Figure 6). The sample was crushed, sieved, and washed in acetone and distilled water. Plagioclase was separated using standard techniques and fresh inclusion-free mineral grains were handpicked under a binocular microscope.

The transformation \(^{39}K(\text{eq})^{40}Ar \) was performed during irradiation at the IFE Kjeller reactor in Norway, using the Taylor Creek Rhylite as flux monitor (28.619 ± 0.034 Ma (Renne et al. 2010)). Samples were step heated in the 40Ar/39Ar laboratory at the Geological Survey of Norway using a Merchatek MR-10 CO2 laser. The extracted gases were swiped over getters (SAES AP-10) for 2 minutes and then for 9 minutes in a separate part of the extraction line. The peaks were determined by peak hopping (at least eight cycles) on masses 41Ar to 39Ar on a Balzers electron multiplier on a MAP 215-50 mass spectrometer. Data from unknowns were corrected for blanks (every fourth analysis is a blank) prior to being reduced with the IAAA software package (Interactive Ar-Ar Analysis, written by M. Gainer, NGU Trondheim, Norway) that implements the equations in McDougall and Harrison (1999) using the decay constants of Renne et al. (2010) and the trapped 40Ar/39Ar ratio of 298.56 ± 0.31 of (Lee et al. 2006). Data reduction in IAAA incorporates corrections for interfering isotopes (based on K2SO4 and CaF2 salts included in the irradiation package), mass discrimination, error in blanks, and decay of 37Ar and 39Ar.