Probabilistic Seismic-Hazard Assessment for East Anatolian Fault Zone Using Planar Fault Source Models

by Zeynep Gülerce, Syed Tanvir Shah, Akın Menekşe, Atilla Arda Özacar, Nuretdin Kaymakci, and Kemal Önder Çetin

Abstract The objective of this article is to provide state-of-the-art probabilistic seismic-hazard assessment maps for the East Anatolian fault zone (EAFZ) based on planar seismic-source models and up-to-date ground-motion models. Development of fault-based seismic-source models requires the definition of source geometry in terms of fault length, fault width, fault-plane angles, and segmentation points for each segment of the EAFZ, building rupture systems that consider fault-to-fault ruptures and associating the observed seismicity with defined rupture systems. This complicated task was performed by compiling the seismotectonic characteristics of the EAFZ using available geological information and the instrumental earthquake catalogs of Turkey. Recently published global Next Generation Attenuation (NGA)-West2 ground-motion models (Bozorgnia et al., 2014) and Turkey-adjusted NGA-West1 models (Gülerce et al., 2016) are used in the ground-motion logic tree with equal weights. The results are presented in terms of the seismic-hazard maps for hazard levels in design codes for different spectral periods and for rock-like reference site conditions ($V_{S30} = 760$ and 1100 m/s).

Introduction

Three major structures govern the active tectonics of Turkey: the dextral North Anatolian fault zone (NAFZ), the sinistral East Anatolian fault zone (EAFZ), and the slab-edge processes related to the Aegean–Cyprian subduction system in the eastern Mediterranean (Fig. 1a). Among these fault systems, the NAFZ is responsible for the largest earthquake rupture sequence in the last century (eight $M_w > 6.7$ events between 1939 and 1999). Especially after the 1999 M_w 7.52 Kocaeli and M_w 7.2 Düzce events, a number of studies providing the seismic hazard and risk estimates along the NAFZ and/or in the Marmara region have been published (e.g., Atakan et al., 2002; Erdik et al., 2004; Crowley and Bommer, 2006; Kalkan et al., 2009; Gülerce and Ocak, 2013). The EAFZ, the other intracontinental transform fault that translates the Anatolian plate westward toward the Aegean–Cyprian subduction system, had seismically been quiet relative to the NAFZ in the twentieth century. It has generally been neglected in terms of probabilistic seismic-hazard assessment (PSHA) studies, except for the country-wide works of Erdik et al. (1985, 1999) and Gülkan et al. (1993). In these extensively used national PSHA studies, areal source zones with homogenous spatial seismicity distribution were preferred, and the activity rates were calculated based on the seismicity in each zone. In the most recent European PSHA effort, the Seismic Harmonization in Europe (SHARE) project (see Data and Resources), both areal source zones and planar fault sources were developed for the NAFZ and EAFZ and combined in the logic tree. Both in the areal source model and the fault source and background model (FSBG), the magnitude recurrence was modeled by double-truncated Gutenberg–Richter relation; however, activity rates were calculated considering the geodetic and geological constraints in the FSBG model (Woessner et al., 2015).

Gülerce and Vakilinezhad (2015) showed that the design ground motions estimated by PSHA using areal source zones are significantly smaller than the results of PSHA based on planar fault models in the close vicinity of the NAFZ. Therefore, planar fault-source models that properly represent the complexities in the fault geometry and accumulation of the seismic moment should be developed for the NAFZ and EAFZ. Over the past 5 yrs, a substantial amount of data related to the seismotectonic characteristics of the EAFZ has been published. The official active fault maps of Turkey (in 1:25,000) were updated by the General Directorate of Mineral Research and Exploration of Turkey (MTA, Emre et al., 2013). Moreover, Duman and Emre (2013) documented the geometry and segmentation characteristics of the northern and southern strands of EAFZ. In addition, a number of studies related to the geological characteristics and displacement rates of the different segments of the EAFZ have been published (e.g., Yılmaz et al., 2006; Bulut et al., 2012; Koç and
Seismic Source Characterization (SSC) Models for the EAFZ

The EAFZ is a northeast–southwest (NE–SW)-striking left-lateral intracontinental strike-slip fault system that extends between the Karlıova junction (where it meets the NAFZ) and Antakya at the NE corner of the Mediterranean Sea (Şaroğlu et al., 1992). The transform nature of the EAFZ was first recognized by Arpat and Şaroğlu (1972), and later the seismotectonic characteristics of the fault zone has been studied by numerous researchers (e.g., McKenzie, 1972, 1976, 1978; Arpat and Şaroğlu, 1975; Jackson and McKenzie, 1984; Dewey et al., 1986; Ambraseys, 1989; Taymaz et al., 1991; Lyberis et al., 1992; Westaway and Arger, 1996; Westaway, 2003, 2004). A comprehensive summary of the previous literature on the geological and tectonic characteristics of the EAFZ is provided in Duman and Emre (2013); therefore, only the issues that significantly affect the SSC model developed for this study are elaborated here. The SSC model proposed herein mostly adopts the fault lines given in the updated active fault maps of MTA (Emre et al., 2013), which are digitized for their geometry and termination points of segments (solid lines in Fig. 1b). However, additional segments that are not available in Emre et al. (2013) are considered (or available segments are extended). These additions are indicated by dashed lines in Figure 1b, and each addition is described in this section, starting from NE to SW.

Karlıova and İlica segments of the EAFZ extend from the Karlıova triple junction in the NE and continue southward to the east of Bingöl (Şaroğlu and Yılmaz, 1990). The area is characterized by notable seismic activity, including the 1866 $M_s 7.0$ Karlıova (Ambraseys and Jackson, 1998) and the 22 May 1971 $M_s 6.8$ Bingöl earthquakes. We adopted the fault segments given in Emre et al. (2013) from Karlıova to Bingöl. The continuation of the EAFZ between the northeastern corner of Bingöl Plain and Palu is very diffuse (Fig. 1). Here, the EAFZ is bifurcated into a number of branches that mostly have the combination of sinistral strike-slip and reverse-slip components. The deformation styles in the region are characterized by a typical compressional duplex geometry (terminology after Woodcock and Fischer, 1986), which is named as the Gökdere restraining bend by Duman and Emre (2013) and the Gökdere push-up herein. The Gökdere push-up is about a 50-km-long and 25-km-wide spindle-shaped positive area with a typical push-up geometry (Fig. 1c,d). Three fault segments control the Gökdere push-up; two of them define its northern and southern boundaries, whereas one of the segments is approximately collinear with the general trend of the EAFZ and dissects

Figure 1. (a) Simplified active tectonic scheme of Turkey (modified from Kaymakçı et al., 2007) EAFZ, East Anatolian fault zone; NAFZ, North Anatolian fault zone. (b) Major branches of EAFZ and slip rates based on geological and Global Positioning System (GPS) velocities. Solid lines are after Emre et al. (2013). Dashed lines are used in this study based on our compilations. (c) Blow-up map, and (d) 3D geometry of Gökdere push-up. (e) Vector summation used to calculate the slip vectors for the faults defining the Maraş block. The color version of this figure is available only in the electronic edition.
the push-up into two blocks. Duman and Emre (2013) reported that the southern edge of the bend is bounded by the Murat River, which was tectonically incised to depths of 700–1000 m during the Quaternary time (Şaroğlu et al., 1992). Possibly, this margin is a strike-slip fault with a south-verging reverse component. Herece (2008) reported ~600 m uplift of the push-up based on elevated terrace deposits during the Quaternary. In the north, the push-up is delimited by a strike-slip fault with a north-verging reverse component, and the eastern margin is delimited by the Bingöl pull-apart basin. In the northwest, faults related to the continuation of the Palu segment merge with the bend and are transformed into thrust faults (Duman and Emre, 2013). Arpat (1971) and Arpat and Şaroğlu (1972) reported up to 1.8-km-long surface ruptures related to the 1971 Bingöl earthquake in the region. Although $M_s > 4$ events were observed in this region during the instrumental period, fault lines given for the Ilıca and Palu segments in the updated active fault maps of MTA (Emre et al., 2013) are discontinuous near the Gökdere push-up. Thus, the system is characterized as a positive flower structure controlled by a vertical strike-slip fault crossing the Gökdere push-up, which forms the western continuation of Ilıca segment in this study (Fig. 1d).

One of the contentious issues in developing the SSC models for the EAFZ is the continuation of the EAFZ toward the west from Türkoğlu. Some authors suggested that the EAFZ continues westward from Türkoğlu and connects with the Türkoğlu–Karataş fault zone and further west into the Kyrenia Range in Cyprus (McKenzie, 1976; Gülen et al., 1987; Hempton, 1987; Karig and Kozlu, 1990; Perinçek and Çemen, 1990, Westaway and Arger, 1996; Westaway, 2003). Others follow the proposal of Şaroğlu et al. (1992) that the EAFZ extends southward from Türkoğlu and reaches the Amuq basin through the Amanos fault (Herece, 2008; Karabacak et al., 2010; Duman and Emre, 2013). Meghraoui et al. (2009) proposed that the EAFZ bifurcates into two branches: the SW–NE-striking Karatas–Osmaniy (KO) and the south-southwest–north-northeast-striking Karasu faults based on Global Positioning System (GPS) measurements and the analysis of fault kinematics data around the Kahramanmaraş–Hatay region. In our analyses, we included both the Türkoğlu–Karataş and Amanos branches in the earthquake rupture forecast as parallel segments that share the total slip rate (Fig. 1b). The Türkoğlu–Karataş rupture system has not been connected to the Türkoğlu junction by Emre et al. (2013), therefore, as part of this study, the northern end of the fault up to the Türkoğlu junction is extended following the fault maps provided by McKenzie (1976), Hempton (1987), and Westaway and Arger (1996). The Türkoğlu–Karataş and Amanos rupture systems defined in this study match with the KO and Karasu faults proposed by Westaway (2003) and Meghraoui et al. (2011).

The most significant difference between Emre et al. (2013) and this study comprises the kinematics and southwestern continuation of the Sürgü fault zone (SFZ). The SFZ is regarded as a sinistral strike-slip fault in Emre et al. (2013). However, Koç and Kaymakçı (2013) argued that the SFZ is a dextral shear zone based on field observations, fault-slip data, and morphotectonic observations, such as displaced and skewed stream courses along the fault zone, indicating dextral motion for more than 3 km. They proposed that the characteristics of the fault zone changes as the trace of the master fault changes along strike. It is a dextral strike-slip fault zone in the east and gradually acquires a reverse component westward as the fault trace curves southward, forming a restraining bend. Further west, it becomes a reverse fault, especially along the Savrun segment. In this study, the proposal of Koç and Kaymakçı (2013) is followed for the fault kinematics, but the fault zone is subdivided into two rupture systems. The eastern system includes the dextral Sürgü rupture system, and it includes the fault segments from the EAFZ in the east up to a point where the fault makes a sharp southward bend around Çardak (Fig. 1b).

Koç and Kaymakçı (2013) stated that the eastern section of the Savrun fault has a reverse component, due to the bending of the fault system. Consistently, the fault is modeled as a reverse and single-segment rupture system independently from the Sürgü rupture system. Because there are controversies about the style of faulting (SoF) for the Savrun fault, a set of sensitivity analysis had been performed by changing the SoF parameter (as strike slip and reverse) and the dip angle of the fault (90° for strike slip and 45°–70° for reverse) in Menekşe (2016). Sensitivity analysis results showed that the dip angle and SoF did not have a significant effect on the hazard results for near-fault sites: the variations on the estimated PGA values were less than 5% for the 475 yr return period. As the source-to-site distance increases, decreasing the dip angle increases the estimated PGA values, especially for higher-hazard levels. When the dip angle is selected as 70° to represent the oblique character of the Savrun segment (as suggested by Koç and Kaymakçı, 2013), the choice of SoF parameter does not significantly change the design PGA values in the near field.

Some of the fault lines given in Emre et al. (2013) are extended as shown by the dashed lines in Figure 1b. The southwestern continuation of the Savrun fault is named here as the Ceyhan fault, a large part of which is included in Emre et al. (2013) as the Misis fault. The fault is exposed within the basement rocks, but so far there is no surface rupture mapped along the fault, which is one of the main criteria in Emre et al. (2013) for a fault to be classified as an active fault. This fault was recognized and mapped by Perinçek et al. (1987) as part of the Göksu fault zone. Later, Yalçınkaya (2005) related its activity to the 26 June 1998 Ceyhan earthquake, and Kaymakçı et al. (2010) provided information about kinematics of the fault. We extended the exposed fault segments below the alluvium and indicated the extended part as a dashed line in Figure 1b to complete the fault-block model. In this study, the Ceyhan fault is modeled as the western boundary fault of the Maraq block, and its slip rate is constrained accordingly (Fig. 1e). In Emre et al. (2013), only the on-land faults are provided. We extended the
southwestern end of the Karataş fault into the offshore area based on the Misis–Kyrenia fault zone of Aksu et al. (2005). Similarly, the Dead Sea fault is shown up to the Turkish–Syrian border by Emre et al. (2013). The Hacipaşa fault of Karabacak et al. (2010) is used as the northernmost segment of the Dead Sea fault zone in Turkey.

Definition of Rupture Systems and the Segmentation Model

A key concern in the SSC model is the definition of fault segmentation models for the earthquake rupture forecast. Several studies proposed different segmentation models for the EAFZ based on different criteria. Hempton et al. (1981) suggested five segments based on the geometrical properties of the fault plane and changes in the fault trend, whereas Barka and Kadinsky-Cade (1988) defined 14 distinct segments, due to the discontinuities (stepovers) along the master fault trace and the relationship between previous surface ruptures and earthquake activity. In Şaroğlu et al. (1992), the EAFZ was divided into six segments based on fault stepovers and changes in the strike of the master fault trace, assuming that the segments can move separately along their lengths, independent of the adjacent segments. A similar approach was adopted in the recent work of Duman and Emre (2013). They proposed seven segments, with segment lengths ranging between 31 and 113 km for the master fault strand. The fault-segmentation model proposed by Duman and Emre (2013) had been adopted in the updated active fault maps of the MTA (Emre et al., 2013).

Recent large-magnitude earthquakes (e.g., the 2002 Denali and 2010 El Mayor–Cucapah earthquakes) showed that the fault ruptures may be complex and span multiple connected fault segments, even if the segments are separated by distinct geological and geomorphological features on the surface (Haeussler et al., 2004; Fletcher et al., 2014). To be able to consider multiple-segment ruptures in the rupture forecast, the segmentation model proposed by Duman and Emre (2013) for the main strand of the EAFZ is simplified by merging some of the neighboring segments. As a result, three distinct and nonoverlapping segments (or rupture systems) are defined between Karlova and Türkiye: the İlica–Karlova, Palu, and Pazarcık–Erkenek rupture systems, as shown in Figure 1b. The İlica–Karlova rupture system includes the Karlova and İlica segments defined by Duman and Emre (2013), in addition to the western continuation of the İlica segment delineated in the Gökdere push-up.

Şaroğlu et al. (1992) defined two separate segments lying in between Palu and Lake Hazar (the Palu segment of Duman and Emre, 2013) and Lake Hazar and Sincik (the Pütürge segment of Duman and Emre, 2013), separated by the Lake Hazar releasing bend. The authors proposed that these segments “can be separated where a pull-apart basin reflected by Lake Hazar is formed, otherwise the two segments are continuous and hence during an earthquake, they may move together” (p. 112). A recent study in the Lake Hazar basin, constrained by high-resolution seismic data combined with land-based observations and analysis of geophysical and geological data from Lake Hazar, revealed that the main strand of the EAFZ is continuous across the Hazar basin (Garcia Moreno et al., 2011). In the region, both recorded seismicity (Fig. 2) and fault orientations support a continuous single rupture system. Thus, the Palu and Pütürge segments that have been treated previously as two separate systems are combined into one large rupture system in this study to avoid any possible underestimation of seismic hazard.

The relationship between the Pazarcık and Erkenek segments is also controversial. Lovelock (1984), Lyberis et al. (1992), and Chorowicz et al. (1994) argued that no major active strike-slip faults are present in the Gölbaşı area. On the contrary, McKenzie (1976), Dewey et al. (1986), Periçek et al. (1987), Barka and Kadinsky-Cade (1988), and Periçek and Çemen (1990) suggested that the EAFZ is continuous through the the Gölbaşı basin. Interpretations by Bircik (1994), Westaway and Arger (1996), and Güneyli (2008) suggest that the Gölbaşı basin is a classical pull-apart basin that has been developed between the Pazarcık and Erkenek segments. Yılmaz et al. (2006) performed a fault-kinematics study along this segment and concluded that the Neogene stress configurations in the region showed a distinct strike-slip character with a reverse component, and most likely the same stress conditions were still active until recently, as indicated by seismicity; therefore, we combined the Pazarcık and Erkenek segments as the the Pazarcık–Erkenek rupture system.

Even though the smaller segments given in Duman and Emre (2013) are combined into relatively bigger rupture systems, the changes in the fault-plane trend, fault jogs, and discontinuities are taken into consideration in PSHA by dividing the rupture systems into smaller fault segments. These small segments are used as the basic building blocks for the earthquake-rupture forecast. The methodology used in this study was outlined in the (Working Group on California Earthquake Probabilities [WGCEP], 2003) San Francisco Bay area model. In WGCEP (2003), a fault segment is defined as the shortest fault section capable of rupturing repeatedly to produce large earthquakes. Both geometric (along-strike variations of fault geometry, presence of fault bends, oversteps, and jogs, etc.), kinematic, and dynamic (information about previous events which includes timing of events, slip rate, rupture length, and distribution of seismic activity) criteria can be used to delimit the fault segments. The fault segments defined for the EAFZ are presented in the third column of Table 1. The rupture source is defined as single or multiple adjacent fault segments that may rupture and produce an earthquake in the future. Any possible combination of sources that describes the full rupture of the system is defined as the rupture scenario by WGCEP (2003). The fault-rupture model includes the weighted combination (weighted average) of all rupture scenarios for the rupture system.
Magnitude Distribution Model Parameters

After the fault geometry models and rupture systems are defined, the rupture models are built by following these steps: (1) selection of the proper magnitude probability distribution functions (PDFs) and definition of the model parameters, (2) estimating the activity rates and forming the magnitude-recurrence model based on the annual slip rate and selected magnitude PDF (the moment-balancing approach as defined by Hecker et al., 2013), (3) association of the seismicity with the defined rupture systems, and (4) testing the magnitude-recurrence model based on the associated catalog seismicity.

Hecker et al. (2013) and Gülerce and Vakilinezhad (2015) showed that coupling the truncated exponential magnitude PDF with seismic sources defined by planar fault geometries results in unrealistically high rates for small-to-moderate magnitude events. Therefore, the composite magnitude PDF proposed by Youngs and Coppersmith (1985) is preferred to represent the relative rates of small-, moderate-, and large-magnitude earthquakes for each rupture source. The composite magnitude PDF includes three parameters: the minimum magnitude (M_{min}) is defined as M_w 4.0 for all seismic sources based on the magnitude of catalog completeness and considering the magnitude limit below which the earthquake has no impact on the structure), characteristic magnitude (M_{char}), and the b-value (slope of the line that represents relative frequency of small-to-moderate earthquakes). Median M_{char} values for each segment are calculated by the magnitude–rupture area relationships proposed by Wells and Coppersmith (1994; hereafter, WC94) and Hanks and Bakun (2014; hereafter, HB14) for strike-slip faults and are listed in Table 1. In these calculations, the fault width for each rupture system were back-calculated from the rupture zones of previous large-magnitude events when possible (e.g., for the 1822 Antakya, 1971 Bingöl, and 2010 Palu earthquakes), and the calculated fault-width values are in good agreement with the depth values given in Emre et al. (2016). The difference in the estimated median M_{char} using WC94 and HB14 equations is not very significant (less than 0.1 magnitude unit for all segments). Therefore, the median M_{char} values based on WC94 equations are preferred and used in the developed SSC model by assigning a weight of 0.6 in the logic tree (a weight of 0.2 is assigned to the median $\pm 1\sigma$ values each, in which σ is approximately equal to the WC94 standard deviation in magnitude units). The upper bounds for the magnitude PDF (M_{max}) are determined by adding a magnitude unit of 0.25 to the M_{char} for each branch in the logic tree (Fig. 3).

The Integrated and Homogeneous Turkish Earthquake Catalog (Kalafat et al., 2011), including the events with $M_w \geq 4$ that occurred between 1900 and 2010, is utilized to represent the instrumental-era seismicity in the region. This catalog is enriched by 41 additional events with $M_w \geq 4$ that occurred between 2011 and 2014 in the region, and their M_w values are computed from local magnitudes, using magnitude-conversion equations proposed by Akkar et al. (2010). After the magnitude scales are unified, the aftershocks and mainshocks are declustered (aftershocks are removed), based on the method proposed by Reasenberg (1985) using the ZMAP software package (Wiemer, 2001), with minimum and maximum look-ahead times of 1 and 10 days, respectively, and an event-crack radius of 10 km. The b-values are calculated within the large-scaled polygons defined around the rupture systems (shown in Fig. 2), using the maximum-likelihood estimation (MLE) and the weighted least-squares (WLS) regression (Aki, 1965; Utsu, 1965; Wiemer and Wyss, 1997) (Table 2). Figure 4a–e shows that the completeness magnitude (M_c) and the b-value for polygons 1–5, estimated by the MLE and WLS methods, are in good agreement, except for polygon 1 (covering a larger area around the Karlîova–Ilica segments). The lowest b-value is obtained for the Ilica–Karlîova rupture system, indicating that the Ilica–Karlîova region has higher stress levels than the others. It is worth noting that polygon 1 had the least number of earthquakes and thus can be more affected by temporary changes in stress conditions. To minimize the possible effects related to undersampling and/or temporary changes, both the rupture system-specific b-values and the b-value calculated for the whole EAFZ are employed, with equal weights assigned in the SSC logic tree (Table 2 and Fig. 3).
The Fault Segments and the Rupture Systems Included in the Seismic Source Characterization (SSC) Model

<table>
<thead>
<tr>
<th>Rupture System Number</th>
<th>Rupture System Name</th>
<th>Segment Name</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Slip Rate (mm/yr)</th>
<th>WC94 M_{char} (M_w)</th>
<th>HB14 M_{char} (M_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ilica–Karlıova</td>
<td>Ilica</td>
<td>32.45</td>
<td>15</td>
<td>10</td>
<td>6.72</td>
<td>6.67</td>
</tr>
<tr>
<td>1</td>
<td>Ilica–Karlıova</td>
<td>Karlıova</td>
<td>40.95</td>
<td>15</td>
<td>10</td>
<td>6.82</td>
<td>6.79</td>
</tr>
<tr>
<td>2</td>
<td>Palu</td>
<td>Palu1</td>
<td>101.11</td>
<td>15</td>
<td>10</td>
<td>7.22</td>
<td>7.28</td>
</tr>
<tr>
<td>2</td>
<td>Palu</td>
<td>Palu2</td>
<td>93.54</td>
<td>15</td>
<td>10</td>
<td>7.19</td>
<td>7.23</td>
</tr>
<tr>
<td>2</td>
<td>Palu</td>
<td>Palu3</td>
<td>30.03</td>
<td>15</td>
<td>10</td>
<td>6.69</td>
<td>6.63</td>
</tr>
<tr>
<td>3</td>
<td>Pazarcık–Erkenek</td>
<td>Pazarcık</td>
<td>83.17</td>
<td>15</td>
<td>7.5</td>
<td>7.14</td>
<td>7.17</td>
</tr>
<tr>
<td>3</td>
<td>Pazarcık–Erkenek</td>
<td>Erkenek</td>
<td>52.30</td>
<td>15</td>
<td>7.5</td>
<td>6.93</td>
<td>6.92</td>
</tr>
<tr>
<td>4</td>
<td>Amanos</td>
<td>Amanos</td>
<td>140.98</td>
<td>15</td>
<td>3.5</td>
<td>7.37</td>
<td>7.45</td>
</tr>
<tr>
<td>5</td>
<td>Türköğlu–Karataş</td>
<td>Karataş</td>
<td>71.52</td>
<td>15</td>
<td>3.5</td>
<td>7.07</td>
<td>7.09</td>
</tr>
<tr>
<td>5</td>
<td>Türköğlu–Karataş</td>
<td>Türköğlu</td>
<td>68.96</td>
<td>15</td>
<td>3.5</td>
<td>7.05</td>
<td>7.07</td>
</tr>
<tr>
<td>6</td>
<td>Sürğü</td>
<td>Sürğü 1</td>
<td>48.86</td>
<td>15</td>
<td>3.0</td>
<td>6.90</td>
<td>6.88</td>
</tr>
<tr>
<td>6</td>
<td>Sürğü</td>
<td>Sürğü 2</td>
<td>69.93</td>
<td>15</td>
<td>3.0</td>
<td>7.06</td>
<td>7.08</td>
</tr>
<tr>
<td>7</td>
<td>Savrun</td>
<td>Savrun West (Savrun)</td>
<td>56.82</td>
<td>15</td>
<td>4.5</td>
<td>6.97</td>
<td>6.96</td>
</tr>
<tr>
<td>8</td>
<td>Ceyhan</td>
<td>Ceyhan</td>
<td>105.56</td>
<td>15</td>
<td>3.0</td>
<td>7.24</td>
<td>7.30</td>
</tr>
<tr>
<td>8</td>
<td>Ceyhan</td>
<td>Kozan</td>
<td>42.59</td>
<td>15</td>
<td>3.0</td>
<td>6.84</td>
<td>6.81</td>
</tr>
<tr>
<td>9</td>
<td>Kyrenia</td>
<td>Kyrenia</td>
<td>66.79</td>
<td>15</td>
<td>6.5</td>
<td>7.04</td>
<td>7.05</td>
</tr>
<tr>
<td>10</td>
<td>Orontes</td>
<td>Orontes</td>
<td>53.76</td>
<td>15</td>
<td>1.5</td>
<td>6.94</td>
<td>6.93</td>
</tr>
<tr>
<td>11</td>
<td>Dead Sea fault</td>
<td>Dead Sea fault</td>
<td>194.56</td>
<td>15</td>
<td>2.0</td>
<td>7.51</td>
<td>7.63</td>
</tr>
</tbody>
</table>

Slip Portioning along the Proposed Segmentation Model and Moment-Balancing Procedure

For each rupture source, the activity rate is calculated by combining the magnitude-distribution model by the balance between the accumulated and released seismic moments, as shown in equation (1). The accumulated seismic moment is a function of the annual slip rate (s) in cm/yr, the area of the fault (in cm2), and the shear modulus of the crust (μ in dyn/cm2). In the following equation, $f_m(M_w)$ represents the composite magnitude PDF of Youngs and Coppersmith (1985):

$$N(M) = \frac{\mu AS}{\int_{M_{min}}^{M_{max}} f_m(M_w) 10^{1.5M_w + 16.05} dm \int_{M_{min}}^{M_{max}} f_m(M_w) dM}.$$

(1)

The annual slip rate has a significant impact on the activity rates calculated by equation (1). McClusky et al. (2000) and Reilinger et al. (2006) proposed a 10 mm/yr slip rate for the master strand of the EAFZ (between Çelikhan and Karlıova), based on GPS measurements. This well-established value for the annual slip rate for the EAFZ is adopted. Because the motion of the Marash block is due northwestward away from the Arabian plate (Fig. 1e), the relative motion along the Pazarcık–Erkenek rupture system is decreased. The annual slip rate along this rupture system is calculated as 7.5 mm/yr, based on the block model given in Figure 1e. This value is consistent with the slip rate proposed by Duman and Emre (2013) for the Erkenek segment. The annual slip rate proposed by Koç and Kaymakcı (2013) for the Sürğü and Savrun rupture systems (2 mm/yr) is modified for a better fit with the released seismic moment based on associated seismicity. A 3 mm/yr dextral slip rate is assigned on the Sürğü rupture system, converted to 4.5 mm/yr slip rate over the dipping plane for the Savrun rupture system and 3 mm/yr sinistral slip along the Ceyhan rupture system (Fig. 1b).

Various interpretations on the annual slip rate are available for the region to the south of the Türköğlu junction in the current literature. In this study, the Türköğlu–Karataş and Amanos rupture systems are considered in the earthquake-rupture forecast as conjugate fault segments, and the kinematics of these segments are determined by the motion of the Amanos block, which is well constrained by GPS studies (Reilinger et al., 2006). In the block models proposed by Mahmoud et al. (2013), the total slip rate (varying between 6.5 and 8.2 mm/yr, depending on the defined blocks) is equally shared among the KO and Karasu faults. Similarly, equal slip rates are assigned (3.5 mm/yr) to the Türköğlu–Karataş and Amanos rupture systems. Further south, the Amanos segment bifurcates into two branches around the Amuq valley. One of the segments, the Orontes fault, trends SW, whereas the other segment strikes north–south and constitutes the northernmost extent of the Dead Sea fault zone. The slip rate of the Dead Sea fault in this region is around 2 mm/yr (Reilinger et al., 2006; Alchalbi et al., 2010), indicating that the slip along the Orontes segment must be approximately equal to 1.5 mm/yr.

The appropriateness of the selected magnitude PDF and the accuracy of the model parameters (i.e., b-value, slip rate, or M_{max}) will be tested by the relative frequency of the seismicity associated in the moment-balanced PSHA procedure. Associating the catalog seismicity with defined rupture systems might be challenging, especially when the distance between the parallel fault strands is relatively small. Bulut et al. (2012) stated that the observed seismicity generally follows the trend of the EAFZ along a 20-km-wide stripe, except for the Çelikhan area, where off-fault distances of seismicity clusters are larger. To perform the source-to-
Figure 3. Logic tree used in the probabilistic seismic-hazard assessment (PSHA) calculations. GMMs, ground-motion models; TR, Turkey. ASK14, Abrahamson et al. (2014); BSSA14, Boore et al. (2014); CB14, Campbell and Bozorgnia (2014); CY14, Chiu and Youngs (2014); TR-AS08, TR-BA08, TR-CB08, and TR-CY08 are the TR-adjusted versions of Abrahamson and Silva (2008); Boore and Atkinson (2008); Campbell and Bozorgnia (2008); Chiu and Youngs (2008) GMMs, respectively.

Table 2

<table>
<thead>
<tr>
<th>Region</th>
<th>Maximum-Likelihood Estimation (MLE)</th>
<th>Weighted Least-Square (WLS)</th>
<th>Manual Fit in ZMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b-Value</td>
<td>Weight</td>
<td>b-Value</td>
</tr>
<tr>
<td>EAFZ, Whole polygon</td>
<td>0.81</td>
<td>0.167</td>
<td>0.848</td>
</tr>
<tr>
<td>Polygon 1 (Karlaov–Ilica)</td>
<td>0.632</td>
<td>0.25</td>
<td>0.578</td>
</tr>
<tr>
<td>Polygon 2 (Palu)</td>
<td>0.715</td>
<td>0.25</td>
<td>0.745</td>
</tr>
<tr>
<td>Polygon 3 (Pazaric–Erkenek, Sorgu, Savrun)</td>
<td>0.918</td>
<td>0.25</td>
<td>0.913</td>
</tr>
<tr>
<td>Polygon 4 (Ceyhan, Turkoglu–Karata, Amanos, Kyrenia, Orontes, DSF)</td>
<td>0.86</td>
<td>0.25</td>
<td>0.875</td>
</tr>
</tbody>
</table>

EAFZ, East Anatolian fault zone; DSF, Dead Sea fault.
Constructing the GMM logic tree for PSHA applications is a controversial issue because local GMMs are developed from the regional datasets, so they are expected to reflect the regional tectonic characteristics better than the others, but the uncertainties introduced by local GMMs are higher than those of the global GMMs because they are based on statistically less stable and limited datasets. GMMs that are suitable for PSHA studies in Turkey are thoroughly discussed in Gülerce et al. (2016), with a focus on NGA-West1 (Power et al., 2008) and NGA-West2 (Bozorgnia et al., 2014) models and their performance on predicting the ground motions in the Turkish ground-motion dataset (Akkar et al., 2010). Findings of Gülerce et al. (2016) are considered for constructing the GMM logic tree in this study. Because the details are provided in the original reference, only a brief summary is given here.

Gülerce et al. (2016) used the plots of the interevent and intraevent residuals to evaluate the differences in the magnitude, distance, and site-amplification scaling between the Turkish strong-ground-motion dataset and the NGA-West1 models. Distribution of interevent residuals indicated that the ground motions in the Turkish strong-motion dataset are overestimated by the NGA-West1 models. This discrepancy is corrected by modifying (only) the small-to-moderate magnitude scaling of the NGA-West1 GMMs to preserve the well-constrained large-magnitude scaling of the global models. Magnitude corrections applied to the NGA-West1 models are in good agreement with the magnitude scaling of NGA-West2 GMMs with more flexible functional forms (Campbell and Bozorgnia, 2014, hereafter, CB14 and Chiou and Youngs, 2014, hereafter, CY14 models) in the $5 < M_w < 6.75$ range. For smaller magnitudes ($M_w < 4$), predictions of the NGA-West2 models and the TR-adjusted NGA-West1 models are similar. The updated model by Idriss (2014; hereafter, ID14) has approximately the same magnitude scaling with the NGA-West1 version (Idriss, 2008; hereafter, ID08), and both models are significantly different than the TR-adjusted version of the Idriss (2008) model (TR-ID08). Therefore, the models proposed by Idriss (2008, 2014) are excluded from the GMM logic tree for this study. Gülerce et al. (2016) pointed out that the mean bias in the median predictions of the TR-ID08 model remained for the long periods even after the adjustments; therefore, the TR-adjusted version of the ID08 model is excluded, and all other TR-adjusted NGA-West1 models (TR-AS08, TR-BA08, TR-CB08, and TR-CY08, the TR-adjusted versions of Abrahamson and Silva, 2008; Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008, GMMs, respectively) are included in the GMMs logic tree.

Figure 4. Completeness magnitude (M_c) and the b-value for defined polygons calculated by the maximum-likelihood estimation (MLE) and weighted least-squares (WLS) regression: (a) polygon 1, (b) polygon 2, (c) polygon 3, (d) polygon 4, and (e) the EAFZ whole polygon. For the last (and the largest) polygon, the manually fitted line is also provided. For the geographic extents of the polygons, refer to Figure 2.
The suite of the NGA-West2 models was found to provide median ground-motion predictions that agree with each other within the factors of about 1.5–2. The biggest differences are observed for the cases in which the NGA-West2 database is incomplete, such as for large earthquakes ($M_w > 7.5$) at close distances and for hanging-wall sites located over the rupture plane of shallow-dipping earthquakes. Therefore, all NGA-West2 models, except for the ID14 model, are included in the GMM logic tree to properly represent the epistemic uncertainty. The selected four TR-adjusted NGA-West1 models and four NGA-West2 models (Abrahamson et al., 2014, hereafter, ASK14; Boore et al., 2014, with regional adjustment applied to anelastic attenuation for Turkey, hereafter, BSSA14; Campbell and Bozorgnia, 2014, and Chiou and Youngs, 2014) were implemented individually in the preliminary hazard runs to quantify the effect of GMM selection on the hazard outcome, and the results are elaborated in Menekşe (2016). Because there are no systematic differences between the hazard estimates of selected models in the high-frequency and low-frequency ranges, equal weights are assigned to the models in the logic tree (12.5% for each model, Fig. 3). Further analysis of the model predictions with recently developed techniques, such as the high-dimensional visualization approach (Scherbaum et al., 2010), trellis charts for global (Stewart et al., 2015) and site-specific (Zimmaro and Stewart, 2017) applications might be considered for the logic-tree weights of selected GMMs but are not applied in this study.

PSHA Maps for the EAFZ and Comparison with the Previous PSHA Maps

The Cornell–McGuire PSHA methodology (Cornell, 1968; McGuire, 2004) was adopted, and the numerical integration of the hazard integral is performed, using the computer code HAZ45 (Pacific Gas & Electric Company [PG&E], 2010). HAZ45 treats the epistemic uncertainties in the SSC models and the GMMs through the use of logic trees. For each rupture source, all combinations of the logic-tree branches are evaluated. For estimating the total hazard on a site, Monte Carlo sampling of source characterization uncertainty is used to combine the epistemic uncertainty for each rupture source. Additionally, full sampling of the GMMs is used to develop the fractals on the total hazard. To prepare the seismic-hazard maps, 653 grid points are defined around the EAFZ, and the density of the grid points is increased within the close vicinity of the fault plane for accuracy (Menekşe, 2016). The last set of points in the grid is 33 km away from the fault plane. Additionally, two different rock-site conditions, rock 1 being the B/C boundary in the NEHRP-site classification system ($\text{V}_{30} = 760 \text{ m/s}$) and rock 2 being the reference rock-site conditions to be used in site-specific response analysis ($\text{V}_{50} = 1100 \text{ m/s}$), are defined for each site (Choi and Stewart, 2005; Walling et al., 2008). Based on the PSHA results, seismic-hazard maps for PGA and spectral accelerations at $T = 0.2$ and 1.0 s, corresponding to the return periods of 475 yrs (10% chance of exceedance at 50 yrs) and 2475 yrs (2% chance of exceedance at 50 yrs) around the EAFZ for rock 1 and rock 2 site conditions are prepared.

The seismic-hazard maps for the 475-yr and 2475-yr return period PGA are shown in Figures 6 and 7, respectively. In both maps, the PGA contours closely follow the fault...
The 475-yr return period PGA is among the other rupture systems. The maximum value of (e.g., Erdik et al. 2009) for the NAFZ is up to two times higher than that of the EAFZ. Zones are comparable, because the annual slip rate of the Amanos rupture system, for which the assigned annual slip rate is the highest (Savrun, and Ceyhan rupture systems are significantly higher than the PGA values given in previous maps. There is a substantial reduction in the PGA values on the south of the Gölbaşı juncture in the SHARE hazard map, indicating that the decrease in the annual slip rate of the Amanos rupture system (probably due to the slip-rate participation between the Amanos rupture system and the other tectonic structures in the area) was also considered in the SHARE project SSC model.

According to the zonation map of the Turkish Earthquake Code (2007; hereafter, TEC-2007), the EAFZ master strand (until the south of the Amanos rupture system) is situated in the earthquake-hazard zone for which the design PGA is equal to 0.4g for regular buildings and 0.6g for important structures (zone I). Contours of PGA = 0.4g and 0.6g are given for comparison in Figures 6 and 7, respectively. Both of these figures clearly show that the PGA > 0.4g and PGA > 0.6g zones of the proposed maps are mostly concentrated around the master strand of the EAFZ but quite thin when compared with the first-degree earthquake-hazard zone of TEC-2007. The design PGA values are higher than 0.4g within the ±15 km buffer zone around the fault plane only up to the south of Türkoğlu. Areas with PGA > 0.4g are rarely observed at the south of this point, except for two patches: the area around the Savrun fault with thrust component and at the intersection of the Ceyhan and Türkoğlu–Karataş rupture systems. It should be noted that the southern parts of the Türkoğlu–Karataş and Ceyhan rupture systems, in addition to the Sürgü and Kyrenia rupture systems, are located in zone II and that the Savrun rupture system is located in zone III, according to the TEC-2007 zonation map, in which the design PGA = 0.3g and 0.2g, respectively.

Summary and Conclusions

The PSHA framework and its components adopted by this study reflect a significant step forward in the PSHA
The SSC model developed here does not include any floating seismic sources to model the earthquakes that may occur outside the buffer zones around the fault planes. Contribution of other nearby active tectonic structures, such as the Bitlis–Zagros suture zone and the NAFZ, is neglected. Therefore, the PSHA maps proposed in this study underestimate the hazard at the northeastern tip of the EAFZ, on the east of the Gölbaşı, and in the area that lies in between the Türkoğlu–Karataş and Amanos rupture systems. The annual slip-rate partitioning between the parallel segments of the EAFZ on the south of the Türkoğlu juncture is still under debate, and this distribution has a significant effect on our results. Proper evaluation of associated slip rates on these parallel segments by GPS measurements and state-of-the-art block models will reduce the uncertainty in these parameters and will lead to more-accurate estimation of design ground-motion levels. Presence of aseismic deformation or creep along the EAFZ is still enigmatic. The preliminary analysis of InSAR and GPS data along the Hazar–Palu section of the EAFZ provided evidence for aseismic deformation comparable with long-term slip rate (Çetin et al., 2016), but the extent of the creeping zones and their rates is not yet well constrained along the EAFZ, thus excluded from further analysis in this study. The recurrence intervals for the characteristic event for any segment of the EAFZ are not available; therefore, time-dependent hazard methodologies are not employed in this study. Determination of paleoseismic recurrence periods will provide a substantial contribution in the PSHA practice of Turkey and eventually will lead to a decrease in the hazard estimates when the time-dependent methods are utilized. We did not build alternative source models as in Uniform California Earthquake Rupture Forecast, version 3 (UCERF3; Field et al., 2014), even if we apply the traditional logic-tree approach for the magnitude recurrence parameters including the maximum magnitudes. For controversial issues (e.g., combination of the segments given in Emre et al., 2013, or participation of the slip rates in parallel branches), our decisions are always biased toward the alternatives that result in higher hazard outputs.

Data and Resources

Information related to the seismotectonic model used in the Seismic Harmonization in Europe (SHARE) Project and the hazard maps are obtained from http://www.efehr.org:8080/jetspeed/portal/hazard.psm (last accessed March 2015). The $M_w ≥ 4$ earthquake catalog for 2011–2014 is download-

Figure 7. PSHA map for the 2475-yr return period PGA for (a) $V_{S30} = 760$ m/s and (b) $V_{S30} = 1100$ m/s. Contour lines (for PGA = 0.6g) represent the design value for special structures for the highest earthquake zone in Turkish Earthquake Code (2007). The color version of this figure is available only in the electronic edition.

Acknowledgments

The efforts by Nick Gregor and Norman A. Abrahamson on incorporating the Turkey-adjusted Next Generation Attenuation (NGA)-West1 models in HAZUS software are gratefully acknowledged. The authors thank Barış Güner for his contribution in the calculation of magnitude-recurrence model parameters. The authors are thankful to Thomas Pratt, John Douglas, and anonymous reviewers for their insightful comments. This study was partially supported by the Pacific Gas & Electric Company Geosciences Department.

References

Campbell, K. W., and Y. Bozorgnia (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra 24, 139–173.

Probabilistic Seismic-Hazard Assessment for East Anatolian Fault Zone Using Planar Fault Source Models

Güllkan, F., M.S. Yucemen, A. Kocyigit, V. Doyuran, and N. Basoz (1993). Seismic zoning map of Turkey based on most recent input, *Middle East Technical University, Earthquake Engineering Research Center, Rept. 93-01*.

Department of Civil Engineering
Middle East Technical University (METU)
Ankara 06800, Turkey
zyilmaz@metu.edu.tr
ocetin@metu.edu.tr

Department of Geological Engineering
Middle East Technical University (METU)
Ankara 06800, Turkey
ozacar@metu.edu.tr
stshah.geo@gmail.com
kaymakci@metu.edu.tr

Turkish-German University (TAU)
Istanbul 34820, Turkey
menekse@tau.edu.tr

Manuscript received 10 January 2017;
Published Online 25 September 2017