Modeling in Transport Phenomena: A Conceptual Approach by Ismail Tosun

 Errata for Second Edition

 Errata for Second Edition}

p. 3 - Comment of Example 1.1

"blow" should be replaced by "blow up"
p. 11 - Problem 1.8

The answer should be

$$
\mathcal{Q}=\frac{4}{3} \frac{\pi b^{3}|\Delta P|}{\mu \ln \left(R_{2} / R_{1}\right)}
$$

p. 27 - Example 2.4

In the first line after Eq. (4) replace "Leibnitz" by "Leibniz".
p. 123 - Eq. (5.3-12)

Equation should be written as

$$
\varepsilon=\frac{n_{i_{o}}}{\left(-\alpha_{i}\right)} X_{i}
$$

p. 170 - Eq. (7) of Example 7.3

Equation should be written as

$$
n_{A}=\frac{\mathcal{Q}_{i n} c_{A_{o}}}{k}[1-\exp (-k t)]
$$

p. 172 - Part (a) of Example 7.4

Time should be

$$
t=\frac{3}{32} \frac{(1145)(0.02)^{2}}{(128)\left(5.17 \times 10^{-4}\right)\left(8.25 \times 10^{-6}\right)}=78,647 \mathrm{~s}=21.8 \mathrm{~h}
$$

p. 206 - Answer to part (a) of Problem 7.19

The answer should be 14 min .
p. 330 - Eq. (9.2-34a)

Equation should be written as

$$
-k \frac{d T}{d r}=q_{1}
$$

p. $\mathbf{3 4 4}$ - Eq. (9.3-28)

Equation should be written as

$$
\dot{Q}=(\pi D L)\langle h\rangle\left[\frac{\left(T_{w}-T_{b_{\text {in }}}\right)-\left(T_{w}-T_{b_{\text {out }}}\right)}{\ln \left(\frac{T_{w}-T_{b_{\text {in }}}}{T_{w}-T_{b_{\text {out }}}}\right)}\right]
$$

p. $\mathbf{3 6 7}$ - Figure 9.19

Figure caption should read, "Variation in the bulk concentration of species \mathcal{A} with the axial direction for a constant wall mass flux."
p. 385 - Eq. (3) of Example 9.14

Equation should be written as

$$
-k \int_{0}^{t} d t=\int_{n_{A_{o}}}^{n_{A}} \frac{d n_{A}}{n_{A}}
$$

p. 405 - Problem 9.33

In the second line from the bottom, replace "heterogeneous" by "homogeneous", i.e., "As \mathcal{B} leaves the surface it decomposes by an isothermal first-order homogeneous reaction, $B \rightarrow A$."
p. 406 - Problem 9.33

In Eq. (9), the definition of the dimensionless distance, ξ, is missing:

$$
\xi=\frac{z}{\delta}
$$

p. 446 - Figure 10.6

The concentration distribution for the case of $\mathrm{Bi}_{\mathrm{M}}>40$ should be as follows:

Solid Fluid

p. 472 - Problem 10.7

The unit of \widehat{C}_{P} should be

$$
\widehat{C}_{P}=840 \mathrm{~J} / \mathrm{kg} . \mathrm{K}
$$

p. 489 - Eqs. (11.1-56) and (11.1-57)

Equations should be written as

$$
\begin{equation*}
\left\langle v_{z}\right\rangle=\frac{\left(\mathcal{P}_{o}-\mathcal{P}_{L}\right) R^{2}}{8 \mu L}\left[1-\exp \left(-\frac{8 \nu t}{R^{2}}\right)\right] \tag{11.1-56}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{Q}=\frac{\pi\left(\mathcal{P}_{o}-\mathcal{P}_{L}\right) R^{4}}{8 \mu L}[1-\exp (-8 \tau)] \tag{11.1-57}
\end{equation*}
$$

p. 526 - Title of Section A. 4

Replace "LEIBNITZ'S RULE" by "THE LEIBNIZ FORMULA".
p. 532 - Eq. (A.6-10)

The equation should be written as

$$
a=\frac{N\left(\Sigma_{i} x_{i} y_{i}\right)-\left(\Sigma_{i} x_{i}\right)\left(\Sigma_{i} y_{i}\right)}{N\left(\Sigma_{i} x_{i}^{2}\right)-\left(\Sigma_{i} x_{i}\right)^{2}}
$$

p. 556 - References

Replace "T.S. Sherwood" by "T.K. Sherwood".
p. 587 - Eq. (B.3-71)

Equation should be written as

$$
\eta=\frac{x}{2 \sqrt{v t}}
$$

