Tosun, Modelling in Transport Phenomena: A Conceptual Approach Errata for First Printing

p. 63 - Problem 3.5

The answer should be $320 \mathrm{~W} / \mathrm{m}^{2}$ and not 320 W .
p. 89 - After Eq. (4.4-7)

The exponent n must be defined as

$$
n=\left\{\begin{array}{lll}
0.37 & \text { if } & \operatorname{Pr} \leq 10 \\
0.36 & \text { if } & \operatorname{Pr}>10
\end{array}\right.
$$

p. 90 - Eq. (4.4-8)

28,200 should be 282,000
p. 92 - Churchill-Bernstein correlation

This section should be replaced by:
The use of Eq. (4.4-8) gives

$$
\begin{aligned}
\mathrm{Nu} & =0.3+\frac{0.62 \operatorname{Re}_{D}^{1 / 2} \operatorname{Pr}^{1 / 3}}{\left[1+(0.4 / \operatorname{Pr})^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{\operatorname{Re}_{D}}{282,000}\right)^{5 / 8}\right]^{4 / 5} \\
& =0.3+\frac{0.62\left(8.46 \times 10^{4}\right)^{1 / 2}(0.714)^{1 / 3}}{\left[1+(0.4 / 0.714)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{8.46 \times 10^{4}}{282,000}\right)^{5 / 8}\right]^{4 / 5}=193
\end{aligned}
$$

The average heat transfer coefficient and the rate of heat loss from the body are

$$
\begin{aligned}
\langle h\rangle & =\mathrm{Nu}\left(\frac{k}{D}\right) \\
& =(193)\left(\frac{24.86 \times 10^{-3}}{0.3}\right)=16 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K} \\
\dot{Q}= & (\pi \times 0.3 \times 1.8)(16)[30-(-10)]=1086 \mathrm{~W}
\end{aligned}
$$

Comment: The rate of heat loss predicted by the Zhukauskas correlation is 9% greater than the one calculated using the Churchill-Bernstein correlation. It is important to note that no two correlations will exactly give the same result.
p. 99 - Eq. (4.5-24)

Equation should be written as

$$
D=\frac{0.575}{N}\left(\left\{\log \left[\varepsilon N+5.875\left(\frac{\mu}{\rho \mathcal{Q} N}\right)\right]-0.171\right\}^{2}\right)^{-1 / 5}
$$

p. 100 - Example 4.14

Part of the "Analysis" section of the example should be replaced by

Hence, Eq. (4.5-24) gives the pipe diameter as

$$
\begin{aligned}
& D=\frac{0.575}{N}\left(\left\{\log \left[\varepsilon N+5.875\left(\frac{\mu}{\rho \mathcal{Q} N}\right)\right]-0.171\right\}^{2}\right)^{-1 / 5} \\
& =\frac{0.575}{1.69}\left(\left\{\log \left[\left(4.6 \times 10^{-5}\right)(1.69)+\frac{(5.875)\left(1001 \times 10^{-6}\right)}{(999)(0.03)(1.69)}\right]\right.\right. \\
& \left.-0.171\}^{2}\right)^{-1 / 5}=0.2 \mathrm{~m}
\end{aligned}
$$

p. 101 - Eq. (4.5-26)
$\operatorname{Re}_{P}^{4 / 5}$ should be replaced by $\operatorname{Re}^{4 / 5}$
p. 101 - Eq. (4.5-27)
$\operatorname{Re}_{P}^{4 / 5}$ should be replaced by $\mathrm{Re}^{4 / 5}$
p. 102 - Eq. (4.5-28) $\operatorname{Re}_{P}^{0.83}$ should be replaced by $\operatorname{Re}^{0.83}$
p. 131 - Problem 4.19

The answer should be 41 min and not 33 min
p. 139 - Example 5.1

Equations (1) and (2) should be written as

$$
\begin{array}{lll}
\alpha_{1} \beta_{11}+\alpha_{2} \beta_{12}+\alpha_{3} \beta_{13}=0 & \text { for } & j=1 \\
\alpha_{1} \beta_{21}+\alpha_{2} \beta_{22}+\alpha_{3} \beta_{23}=0 & \text { for } & j=2
\end{array}
$$

p. 222 - Problem 7.4

The answer to part (b) should be $0.1 \mathrm{~m}^{5 / 2} / \mathrm{min}$ and not $0.17 \mathrm{~m}^{5 / 2} / \mathrm{min}$.
p. 268 - Example 8.8

In the problem statement the units of k should be W / m. K and not $\mathrm{W} / \mathrm{m}^{2}$. K
p. 272 - Eq. (8.2-53)

The equation should be written as

$$
\dot{Q}=\frac{T_{1}-T_{2}}{\frac{R_{2}-R_{1}}{4 \pi k R_{1} R_{2}}}
$$

p. 313 - Eq. (8.5-39)

The equation should be written as

$$
N_{A_{z}}=-\mathcal{D}_{A B} \frac{d c_{A}}{d z}+c_{A} v_{z}^{\llbracket}
$$

p. 380 - Eq. (9.4-20)

The equation should be written as

$$
\dot{n}_{A}=\frac{\pi R^{2} \mathcal{D}_{A B} c_{A_{o}} \Lambda \tanh \Lambda}{L}
$$

p. 383 - Eq. (9.4-43)

The equation should be written as

$$
u=K_{1} \sinh (\Lambda \xi)+K_{2} \cosh (\Lambda \xi)
$$

p. $\mathbf{3 8 4}$ - Eq. (9.4-48)

The equation should be written as

$$
\dot{n}_{A}=-4 \pi R \mathcal{D}_{A B} c_{A_{R}}(1-\Lambda \operatorname{coth} \Lambda)
$$

p. 420 - Problem 9.12

Equation (2) in part (a) should be written as

$$
\frac{d}{d x}\left(\mu \frac{d v_{z}}{d x}\right)=0
$$

Also, the statement of part (b) should read, "Integrate Eq. (2) and"
p. 424 - Problem 9.17

In the problem statement, Section 9.5.4.2 should be replaced by Section 9.5.2.1.
p. 450 - Equation (10.2-92)

The equation should be written as

$$
\rho \hat{C}_{P} \frac{\partial T}{\partial t}=\frac{k}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)
$$

p. 466 - Equation (10.3-44)

The equation should be written as

$$
\xi=\frac{r}{R}
$$

p. 555 - Equation (B.3-11)

The equation should be written as

$$
p(x)=\exp \left(\int^{x} \frac{a_{1}(u)}{a_{o}(u)} d u\right)
$$

p. 555 - Equation (B.3-12)

The equation should be written as

$$
p(x) \frac{d^{2} y}{d x^{2}}+\frac{a_{1}(x)}{a_{o}(x)} p(x) \frac{d y}{d x}+\frac{a_{2}(x)}{a_{o}(x)} p(x) y=0
$$

p. 555 - Example B. 12

Equation (2) should be written as

$$
p(x)=\exp \left(-\int^{x} \frac{d u}{u}\right)=\frac{1}{x}
$$

p. 560 - Equation (B.3-28)

The equation should be written as

$$
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}}
$$

p. 560 - Equation (B.3-33)

The equation should be written as

$$
\xi=\frac{x}{L}
$$

