
CHAPTER 13 
Approximate Solutions for 1-D Media 

 
The Optically Thin Approximation 
 
Gray medium between two diffuse gray isothermal parallel plates. 
For ( )G τ and q( )τ  we obtained expressions (12.21) and (12.22) 

 
 
Assume optically thin medium: 1Lτ � . 
Evaluate q( )τ  accurate up to O( )τ neglecting O 2( )τ  terms. 

Note: 2
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1( ) ( )  and  ( ) 1 ( )
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E x x O x E x O x= − + = + from App.E. Note also that E2 appears 

inside integrals. 

 
Since ( )S τ  is in integral, we need to evaluate it O . Note that for isotropic scattering (1)

( )S τ  is given with Eq(12.5):  

  
Thus we need to evaluate ( )G τ  up to O : (1)
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• If ( )bI τ is known: 
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 which leads to Eq(13.6): 
 

 



• If Radiative Equilibrium: 
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------------------------ 
If temperature of the medium specified, we are usually interested in divergence of heat 
flux (dq/dz). To obtain dq/dz accurate to O( )τ , we must obtain dq/dτ  to O , thus (1)

( )G τ to O . From Eq(12.24): (1)

 
Since 1 2( ) 2 2 ( )G J J Oτ τ= + + : 

 
 
 
The Optically Thick Approximation (Diffusion Approx.) 
 
Optically thick slab: 1Lτ �  
In Eq(13.2) change integral variables τ τ τ τ′ ′′ ′→ = −  

 
We are large optical distance away from surfaces  1 and 1Lτ τ τ�⇒ , therefore 
influence of becomes negligible and we can replace integral limits with ∞ 

− �

2J1  and J
( 2 ( ) 0E τ ′′ = beyond actual limits). 

 
 
Taylor series expansion of S:  

 
Therefore: 



 
 
Note: Integration by parts:  

 
• For a non-scattering medium or a gray medium at radiative equilibrium: 

    bS I= ⇒  

 
• Isotropically scattering medium: 

We need to obtain ( )G τ similar to ( )q τ : 

 



For an optically thick, isotropically scattering medium at radiative equilibrium or 
not: 

4( )
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Rosseland Approx. (Diffusion approx) On a spectral basis: 

  
Total heat flux: 

 
where Rβ is Rosseland mean extinction coefficient (defined in Eq(9.104)). 
 
We may define a “radiative conductivity” 

 
so that  

 
In 3-D: 

 
In practice, the method is useful only in optically extremely thick situations like 
heat transfer through hot glass. 

 
• Deissler’s Jump BCs: 

We took 0 and 0Lτ τ τ−� �  for optically thick medium, so what happens close 
to surfaces? 
No radiative principle states that the temperature of surface and adjacent mediu 
must be continuous. 
For 0τ =  Eq(13.10): 

 
truncating the series after the second derivative. 



Substituting Eq(13.13)  
(with the same order of accuracy) 
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For radiative equilibrium of a 1-D slab: 

 

since q=const. and therefore, 
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The generalized jump condition for multidimensional geometries: 

 
 

The Schuster-Schwarzschild Approximation (Two-flux approx): 
 
A very simple solution method for 1-D plane parallel slab. 
Isotropically scattering gray medium: 1Φ = . 
From Eq(12.19): 

 
Assume: 

 
Substituting this in to Eq(13.27): 

 
Writing this as two space dependent equations (note and I I− + are only ( )f τ ) and 
integrating over upper and lower hemispheres: 

 
with BCs: 

 
From the definitions: 



 
Eq(13.30a)+ Eq(13.30b): 
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Eq(13.30a) - Eq(13.30b): 
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BCs: 
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So we obtain ODEs together with necessary BCs for the problem. 
 
See Example (13.4). 
 

• Schuster-Schwarzschild always goes to correct optically thin limit ( 0Lτ → ) 
• Method is easilky generalized by breaking up 4π to more than 2 components 

  ⇒ Discrete Ordinates Method (SN approximation)      see Ch15. 
 

The Milne-Eddington Approximation (Moment method) (Differential Approx.) 
 
Start with Eq(13.27): 

 

Defining intensity moments: 
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For example: from zeroth moment integral in Eq(13.27): 
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Take the zeroth and first moment of Eq(13.27): 
The zeroth: 
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The first: 

1 1
2

1 1

1
2

1

2 2 ( )

(1 )2 b

dI d RHS d
d

dI I d
d

π µ µ π µ µ
τ

ω π µ µ
τ

− −

−

=

= −

∫ ∫

∫
1 1

0

1 1

2 2
2 2

II d dωπ µ µ π µ µ
π− −

− +∫ ∫

2
10 0dI I

dτ
= − +

 

Note that: . 
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Therefore: 

 
So we have 2 equations and 3 unknowns ( 0 1 2,  and I I I ). We need one more equation for 
closure (closing condition). 
Assume the intensity to be isotropic over both the upper and lower hemispheres (like 
two-flux assumption): 
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Therefore 3 equations we obtained:  
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With : 0 1 and G I q I= =

 
BCs identical to two-flux BCs: 

 
 

• In case of radiative equilibrium: 0dq
dτ
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which is same as diffusion approximation (optically thick). 
 

 
Milne-Eddington may be generalized to higher order moments as well as more general 
geometries (moment method): 

 
where is a vector (related to q) ( )1I r
 ( ) is a second-rank tensor (which may be related to radiation pressure) 2I r
Direction cosines of unit direction vector ŝ  are 
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Unknowns in Eq(13.46) are determined by taking the moments of the equation of transfer 
( i.e. by integrating over all directions after multiplication by 1 ). 
This is equivalent to the method of spherical harmonics (P

2 2 2, , , , , , ,x y z x y zs s s s s s …
N Method of Ch14) 

 
 
 

  
 



 
 

 
 

 
 


