 pp.161-162, problems 1,2,3,4,5.

2. Past TMS questions

3. Find the complete integrals and the *singular solutions*, if any, of the following partial differential equations.

 Notation : \(p = \frac{\partial u}{\partial x}, \) \(q = \frac{\partial u}{\partial y}. \)

 (a) \(u = px + qy + pq. \)
 (b) \(u^2(p^2 + q^2 + 1) = 1. \)
 (c) \(p^2 + pq = 4u. \)
 (d) \(x^4p^2 + y^2q = 0. \)

3. Let μ be a metric with coefficients g_{ij} in a region $\Omega \subset \mathbb{R}^n$. Write the corresponding Laplace operator and verify that it is invariant under the isometries of μ.

4. a) Show that for any region $\Omega \subset \mathbb{R}^n$, Green’s function is unique.

 b) Write the Green’s function for $\Omega = \{x \in \mathbb{R}^n : |x| > R > 0\}$.

2. Review of the method of separation of variables:

Solve the following boundary value problem.

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \quad \text{in} \quad \{(x,t) \in \mathbb{R}^2 : \pi > x > 0, \ t > 0\},
\]

\[u(0,t) = u(\pi,t) = 0, \quad u(x,0) = g(x),\]

where

\[g(x) = \begin{cases}
 x & \text{if } 0 \leq x \leq \pi/2 \\
 \pi - x & \text{if } \pi/2 \leq x \leq \pi
\end{cases}\]

3. Let \(G(x,t) = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right). \)

a) Show that \(u(x,t) = 2 \int_0^t G(x,t-t')f(t')dt' \) is the solution of the following BVP

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \quad \text{in} \quad \{(x,t) : x > 0, \ t > 0\}
\]

\[u(x,0) = 0 \quad \text{for } x > 0, \quad \frac{\partial u}{\partial x} \big|_{x=0} = -f(t) \quad \text{for } t > 0.
\]

b) Show that \(u(x,t) = 2 \frac{\partial}{\partial x'} \left(\int_0^t G(x-x',t-t')f(t')dt' \right) \bigg|_{x'=0} \) is the solution of the following BVP
\[\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} \quad \text{in} \quad \{(x,t) : x > 0, \ t > 0\} \]

\[u(x,0) = 0 \quad \text{for} \quad x > 0, \quad u(0,t) = f(t) \quad \text{for} \quad t > 0, \]

\[\lim_{x \to \infty} u = 0, \quad \lim_{x \to \infty} \frac{\partial u}{\partial x} = 0, \quad \text{for} \quad t > 0. \]

MATH 583
Partial Differential Equations I
Spring 2014
Problem Set 4

1. Past TMS questions:

3. Consider the PDE
 \[x^2 \frac{\partial u}{\partial x^2} - y^2 \frac{\partial u}{\partial y^2} = 0 \quad (*) \]
 a) Determine the normal form of this equation.
 b) Show that the general solution of the normal form is given by
 \[u(\xi, \eta) = f(\xi) + \sqrt{\xi}h(\eta) \]
 for suitable functions \(f, h \) (\(\xi, \eta \) are the characteristic variables).
 c) Solve the following boundary value problem for (*) and determine the domain of the solution.
 \[u = 1 \quad \text{on} \quad y = x, \quad 0 \leq x \leq 1 \]
 \[u = x \quad \text{on} \quad y = 1/x, \quad 1 \leq x \leq \infty. \]