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Theoretical Analysis of Open Spherical Microphone
Arrays for Acoustic Intensity Measurements
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Abstract—Acoustic intensity is a vectorial measure of acoustic
energy flow through a given region of interest. Three dimensional
measurement of acoustic intensity requires special microphone
array configurations. This article provides a theoretical analysis
of open spherical microphone arrays for the 3-D measurement
of acoustic intensity. The calculation of the pressure and the
particle velocity components of the sound field inside a closed
volume is expressed using the Kirchhoff-Helmholtz integral
equation. The conditions which simplify the calculation are
identified. This calculation is then constrained to a finite set
of microphones positioned at prescribed points on a sphere.
Several open spherical array topologies are proposed. Their
magnitude and directional errors and measurement bandwidths
are investigated via numerical simulations. A comparison with
conventional open-sphere 3-D intensity probes is presented.

Index Terms—Microphone arrays, acoustic intensity, spherical
arrays, source localization

I. INTRODUCTION

ACOUSTIC intensity represents the net flow of acoustic
energy through a given region [1]. It is a physical vector

quantity showing the direction and the strength of a sound
field at a given measurement position. Instantaneous acoustic
intensity at a point x is defined as:

I(x, t) = p(x, t)v(x, t) (1)

where p(x, t) is the pressure and v(x, t) is the particle velocity
vector at that point.

Acoustic intensity has both active and reactive parts. Active
intensity refers to the part of the signal energy which flows,
and reactive intensity refers to the part of the signal energy
which is stored. The active part of the acoustic intensity is in
phase while the reactive part is out of phase with the pressure
measured at the same position. For a monochromatic sound
field with the angular frequency of ω = 2πf , the active and
the reactive intensities are defined respectively as [2]:

Ia(x, ω) =
1

2
<{p(x, ω)v∗(x, ω)} (2)

Ir(x, ω) =
1

2
={p(x, ω)v∗(x, ω)} (3)
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where (·)∗ denotes complex conjugation.
The pressure and the particle velocity signals are in phase

and the reactive intensity is zero for the sound field due to an
ideal plane wave propagating in the acoustic free-field. This
corresponds to a purely active acoustic intensity. On the other
extreme, the non-propagating energy is much stronger in the
close vicinity of the sound source. This region, also known
as the acoustic near field, depends on the frequency and the
distance from the source and has a predominantly reactive
acoustic intensity [3]. Actual sound fields in real rooms that
consist of a combination of direct sound, interference of
reflections and diffuse reverberation are neither purely active,
nor purely reactive, but have both components.

Apart from its primary use in measuring the acoustic power
and the sound radiation [1], active intensity has also been
used as a basis for sound source localization [4][5][6], source
separation [7][8][9] and spatial audio coding [10][11]. These
tasks require the accurate measurement of acoustic intensity.

Active intensity can be measured using two different meth-
ods called the p-p and the p-u methods [12][13]. The p-
p method uses the sum and difference of signals from two
closely positioned pressure probes to obtain finite difference
approximations of the pressure and the particle velocity,
respectively. Active intensity is then calculated in the axial
direction of the microphones at their mid-point. The p-u
method uses a velocity probe in addition to a pressure probe to
avoid systematic errors due to finite difference approximation.
A major disadvantage of both methods is their inability to
measure 3-D intensity vectors.

Alongside the newer generation micromachined 3-D in-
tensity probes using individual pressure and particle velocity
sensors [14][15] there also exist more conventional 3-D vector
probes consisting of several p-p pairs. These probes typically
have either tetrahedral or cubic topology [16][17][18], which
are both different sampling schemes on an open sphere.

Several issues with three-dimensional acoustic intensity
measurements can be listed. Firstly, the finite number of micro-
phones used in a 3-D intensity probe causes the measurement
accuracy to depend on the directions of the sound sources [7].
Secondly, the measurement of intensity in the acoustic near-
field or more generally in sound fields with non-negligible
reactive components can be problematic [19]. Thirdly, the
separation between individual elements used in the design
limits the accuracy of the measurements especially at high
frequencies due to systematic errors [20]. Finally, the phase
mismatches between individual array elements cause errors
reducing the accuracy of the arrays at low frequencies [19].
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Fig. 1. Geometry of a source-free volume bounded by a surface on which
the pressure and the particle velocity due to an external source are known.

A theoretical analysis of open spherical microphone arrays
to measure acoustic intensity is presented in this article. Nine
open spherical microphone arrays based on the Kirchhoff-
Helmholtz integral are proposed. Numerical simulations are
provided to demonstrate the accuracy of these arrays for the
far-field and the near-field conditions. The effects of array size
and component mismatch on the accuracy of the proposed
arrays are also investigated. It is shown that the proposed
arrays provide a significantly greater measurement bandwidth
than the conventional arrays.

This paper is organized as follows. Sec. II discusses the
calculation of the intensity based on the Kirchhoff-Helmholtz
integral on an open spherical surface. Sec. III presents three
quadrature schemes and corresponding array topologies for
the numerical calculation of acoustic intensity at the center
of the sphere. Sec. III provides a numerical comparison of
these array topologies with respect to their ideal response
for point sources in the acoustic far-field and near-field.
Dependence of the array performance on the array size is
evaluated. Errors due to phase mismatches between the array
elements are numerically investigated and the proposed arrays
are compared with conventional arrays for their performance
in monochromatic plane wave fields. Sec. V summarizes the
findings and concludes the article.

II. PRESSURE AND VELOCITY AT THE CENTER OF AN OPEN
SPHERE

A. Kirchhoff-Helmholtz integral equation
Let us consider a source-free open volume bounded by the

surface S0 as shown in Fig. 1. If the pressure, p(xm, ω), and
the particle velocity normal to the surface, vn(xm, ω) at each
point xm ∈ S0 are known, the pressure field within the volume
enclosed by this surface can be exactly determined using the
Kirchhoff-Helmholtz integral equation [21][22]:

p(x, ω) =

∫∫
S0

[jωρ0vn(xm, ω)G(xm|x, ω) (4)

+ p(xm, ω)
∂G(xm|x, ω)

∂nm

]
dS0

where,

G(xm|x, ω) =
e−jk‖x−xm‖

4π‖x− xm‖
(5)

is the free-field Green’s function for a point source, ω = 2πf
is the angular frequency, k = |ω/c| is the wave number, ρ0
is the air density, nm is the unit vector normal to the surface
at the point xm, and the directional derivative of an arbitrary
spatial function f(x) is given as:

∂f(x)

∂n
= ∇f(x) · n. (6)

Euler’s equation relates gradient of the pressure field to the
time derivative of the particle velocity field such that:

ρ0
∂v(x, t)

∂t
= −∇p(x, t). (7)

If Euler’s equation is expressed in the frequency domain as
−jωρ0v(x, ω) = ∇p(x, ω), the Kirchhoff-Helmholtz integral
can be expressed as a function of the pressure field only:

p(x, ω) = (8)

−
∫∫

S0

[
∂p(xm, ω)

∂nm
G(xm|x, ω)− p(xm, ω)

∂G(xm|x, ω)

∂nm

]
dS0.

The particle velocity is then given as:

v(x, ω) =
1

jωρ0

∫∫
S0

[∂p(xm, ω)

∂nm
∇G(xm|x, ω) (9)

−p(xm, ω)∇(∇G(xm|x, ω) · nm)
]
dS0.

Defining the unit vector from the point on the surface in the
direction of the estimation point, x, as nRm

= (x−xm)/‖x−
xm‖, the following expressions can be given:

∇G(xm|x, ω) = −
(
jk +

1

Rm

)
G(xm|x, ω) nRm

, (10)

∇(∇G(xm|x, ω) · nm) =(
2

R2
m

+
j2k

Rm
− k2

)
G(xm|x, ω)〈nRm

,nm〉 nRm
(11)

−
(
jk +

1

Rm

)
G(xm|x, ω)∇〈nRm ,nm〉,

where Rm = ‖x−xm‖ and 〈nRm
,nm〉 = cos θm is the inner

product of two unit vectors. Note that for the general case the
unit vectors, nRm and nm are not coincident.

B. Open spherical microphone arrays

The derivation given above did not make any distinction on
the shape of the volume and the integration surface. Since we
are interested in measuring the acoustic intensity at a single
point, positioning individual microphones on an open sphere
is a reasonable choice as it allows some useful simplifications.

Let us now consider an open sphere of radius R centered
around the coordinate origin (i.e. x = 0). The inward normal
unit vector, nm, and the unit vector in the direction of the
center, nRm

, are coincident. Therefore, ∇〈nRm
,nm〉 = 0 in

(11). Also, since each point on the sphere, xm, is equidistant
from the center, the free-field Green’s function between a
point positioned on the spherical surface and its center can
be simplified to [23]:

G(xm|0, ω) =
e−jkR

4πR
(12)
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Fig. 2. Calculation of the pressure and the pressure gradient on a measure-
ment surface (solid line) using known pressure distributions on two concentric
open surfaces (dashed lines).

where R = ‖xm‖.
A particle velocity probe and a pressure probe cannot be

strictly coincident. Therefore, the direct calculation of the
Kirchhoff-Helmholtz integral in (4) is not feasible. However,
pairs of omnidirectional microphones can be used to approx-
imate both the pressure and the directional derivative of the
pressure at a given point.

In order to address this practical limitation, let us assume
that the pressure distributions on two concentric open spherical
surfaces separated by a radial distance of ∆r are known (see
Fig. 2). Let us also consider two radially aligned points, xm,out
and xm,in in the outer and the inner surfaces, respectively:

xm,out = xm −
∆r

2
nm (13)

xm,in = xm +
∆r

2
nm (14)

Given that the pressure signals at these points are known,
finite difference approximations to the pressure and the di-
rectional derivative of pressure at the point xm on another
open spherical surface midway between the outer and the inner
surfaces can be obtained such that:

p(xm, ω) ≈ 1

2
[p(xm,out, ω) + p(xm,in, ω)] (15)

∂p(x, ω)

∂n

∣∣∣∣
x=xm

≈ 1

∆r
[p(xm,out, ω)− p(xm,in, ω)] . (16)

Here, a good approximation is obtained if ∆r � λ
4 where

λ = c/f is the wavelength. This allows expressing the pressure
and the particle velocity at the center as a function of the

p(xm,out,�)

0

�r/2

�r/2

nm

po(!)

Fig. 3. Open spherical surface with a known pressure distribution (dashed
line) and at the center. The particle velocity and the pressure are calculated
on the measurement surface (solid line).

pressure distributions on two concentric spherical surfaces:

po(ω) = (17)

− e−jkR

4πR

[∫∫
S0

(
jk

2
+

1

2R
+

1

∆r

)
p(xm,out, ω)dS0

+

∫∫
S0

(
jk

2
+

1

2R
− 1

∆r

)
p(xm,in, ω)dS0

]
,

vo(ω) = − 1

jωρ0

e−jkR

4πR
× (18)[∫∫

S0

(
jk

∆r
+

1

∆rR
+

1

R2
+
jk

R
− k2

2

)
p(xm,out, ω)nmdS0

+

∫∫
S0

(
− jk

∆r
− 1

∆rR
+

1

R2
+
jk

R
− k2

2

)
p(xm,in, ω)nmdS0

]
.

Another useful simplification is possible if the pressure at
the center and the pressure distribution on an open spherical
surface of radius ∆r are known (see Fig. 3). In other words
xm,in = 0 and xm,out = −∆rnm. This allows the calculation
of the directional derivative in the radial direction at a radius of
R = ∆r/2. Since, the actual pressure at the center is already
available, the calculation of (17) becomes unnecessary. Also,
the second surface integral in (18) vanishes and the particle
velocity can be expressed as:

vo(ω) = (19)

− 1

jωρ0

(
3

2R2
+
j3k

2R
− k2

2

)
e−jkR

4πR

∫∫
S0

p(xm,out, ω)nmdS0.

Denoting the pressure signal p(xm,out, ω) in the spherical
coordinates as p(θ, φ, ω) where θ ∈ [0, π] and φ ∈ [0, 2π)
are the elevation and azimuth angles, respectively and the area
element as dS0 = R2 sin θdθdφ, the expression given in (19)
simplifies to:

vo(ω) =
1

4π
F (R,ω)

∫ 2π

0

∫ π

0

p(θ, φ, ω)nθ,φ sin θdθdφ,

(20)
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where F (R,ω) = − 1
j2ωρ0

e−jkR

R

(
3 + j3kR− k2R2

)
. This

expression corresponds to a parallel combination of an in-
tegrator, a gain element and a differentiator in series with a
linear phase shift.

III. MICROPHONE ARRAY TOPOLOGIES

Calculation of the acoustic intensity at a given point requires
that the pressure and the particle velocity at that point are
known. It is assumed in this article that the pressure at the
center of the open sphere is directly measured. In order to
calculate the exact particle velocity, the pressure has to be
known everywhere on the open sphere so that the surface
integral given in (20) can be calculated. This is not a feasible
requirement. Instead, the pressure distribution on the surface
can be sampled at a finite number of points to obtain a
bandlimited approximation of the particle velocity. In practice,
sampling is done by positioning pressure microphones at those
points.

There are several quadrature schemes for obtaining an
approximation to a surface integral on a sphere. Three such
schemes are summarized and their applicability to the open
spherical microphone arrays is discussed in this section. The
aim is to express the particle velocity in the following form:

ṽo(ω) = CsF (R,ω)

M∑
m=1

wmp(θm, φm, ω)nm (21)

where Cs is a constant, and {wm} are the real weights of the
respective quadrature schemes. In the following, Cs = 1 for
the Lebedev quadrature, Cs = 1/4M for the product Gauss
quadrature, and Cs = 1/4π for the finite element quadrature.

The discussion in this section is limited to a total element
count of up to 32 microphones. In the following, the pressure
microphone at the center of the array is always implied and
when an M -element array is mentioned, the total number of
microphones including the pressure microphone at the array
center is M + 1.

A. Lebedev Quadrature

The Lebedev quadrature scheme allows obtaining an ap-
proximation to the integration of a smooth function on a
spherical surface. The approximation is accurate up to a given
order of spherical harmonics. The Lebedev quadrature uses
discrete points with octahedral symmetry on the unit sphere
at which individual elements of the microphone array are
positioned. The sampling points on the sphere, (θm, φm)
are calculated as the vertices of rotational permutations of
octahedrons. The approximation to (20) can be obtained by:

ṽo(ω) = F (R,ω)

M∑
m=1

wmp(θm, φm, ω)nm. (22)

Based on the premise that only the array topologies with
at most 32 elements are considered, the following numerical

(a) (b) (c)

Fig. 4. Microphone array topologies with (a) 6 (octahedron), (b) 14, and
(c) 26 elements for use with the first-, second-, and third-order Lebedev
quadrature schemes, respectively. The filled black circles show the microphone
positions.

scheme holds:

ṽo(ω) = F (R,ω)

[
A1

6∑
m=1

p(θm,1, φm,1, ω)nm,1

+ A2

8∑
m=1

p(θm,2, φm,2, ω)nm,2 (23)

+ A3

12∑
m=1

p(θm,3, φm,3, ω)nm,3

]
.

Here, A1, A2, and A3 are the first-, second-, and third-order
Lebedev grid weights [24]. With the given constraint on the
maximum number of microphones, the Lebedev quadrature
requires 6, 14, or 26 sampling points on the unit sphere for
the approximation of the surface integral up to first-, second-,
and third-order spherical harmonics, respectively. Higher order
Lebedev grids require more than 32 elements and are thus not
considered in this article. Fig. 4 shows the sampling points
on the sphere that can be used with the Lebedev quadrature
scheme.

B. Product Gauss Quadrature

A numerical approximation to the surface integral in (20)
can also be obtained using the product Gauss quadrature [25].
This allows expressing the surface integral as a finite double
series:

ṽo(ω) =
1

4M
F (R,ω)

2M∑
m=1

M∑
n=1

wnp(θn, φm, ω)nnm. (24)

If the elevation angles, {θn} are selected in such a way that
{cos θn} are the Gauss-Legendre nodes and {wn} are the
corresponding weights on [−1, 1], the discrete sum provides
a polynomial approximation of degree 2M to the surface
integral. The 2M azimuth angles are uniformly distributed
from 0 to 2π. The total number of measurement points (i.e.
microphones) that need to be used with the product Gauss
quadrature for an order of M is 2M2. The highest order that
is be discussed in this work is M = 4 which corresponds to
32 microphones. Fig. 5 shows the sampling points for product
Gauss quadrature on the unit sphere for second, third, and
fourth orders corresponding to 8, 18, and 32 array elements,
respectively.
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(a) (b) (c)

Fig. 5. Microphone array topologies with (a) 8 (cube), (b) 18, and (c)
32 elements for use with the first-, second-, and third-order product Gauss
quadrature schemes, respectively. The filled black circles show the microphone
positions.

(a) (b) (c)

Fig. 6. Microphone array topologies with (a) 4 (tetrahedron), (b) 12
(icosahedron), and (c) 20 (dodecahedron) elements for use with the finite
element quadrature scheme. The filled black circles show the microphone
positions.

C. Finite Element Quadrature

If the spherical surface is partitioned into a finite number of
surface elements, the more straightforward method of centroid
rule [25] can be applied. Assuming that {∆0,∆1, · · · ,∆n−1}
is a partitioning of the sphere and (θm, φm) is the centroid of
∆m, a numerical approximation to (20) can be calculated as:

ṽo(ω) ≈ 1

4π
F (R,ω)

n−1∑
m=0

p(θm, φm, ω)nmA(∆m) (25)

where A(∆m) represents the area of the corresponding parti-
tion.

While the finite element quadrature allows any partitioning
of the spherical surface, only the uniform sampling schemes
are considered in this article. Five such choices are the
tetrahedral, octahedral, cubic, icosahedral, and dodecahedral
topologies, which correspond to 4, 6, 8, 12, and 20 discrete
measurement points. Only the topologies with 4, 12, and 20
elements are shown in Fig. 6 as the finite element quadra-
tures for 6 and 8 element arrays are equivalent to the first-
order Lebedev quadrature and the second-order product Gauss
quadrature, respectively.

IV. COMPARISON OF DIFFERENT SCHEMES AND ARRAY
TOPOLOGIES

A numerical comparison of different array topologies is
given in this section. Calculation of the acoustic intensity
for monochromatic sources is discussed first, followed by the
performance metrics used for assessing the arrays. Numerical

simulations that are used to compare different array topologies
are then presented.

A. Monochromatic sound fields

Let us assume that we have a steady state monochromatic
acoustic field with a frequency of fs = 1/T . The time
averaged complex acoustic intensity at a given point can be
calculated as:

Ic(t) =
1

2T

∫ T

0

po(t)v
∗
o(t)dt (26)

The time averaged active intensity can be expressed in the
frequency domain as:

Ia(ω) =
1

2
<{po(ω)v∗o(ω)}. (27)

The time averaged active intensity obtained using the proposed
arrays can then be expressed by substituting (21) into (27) such
that:

Io(ω) =
1

2
<

{
po(ω)CsF

∗(R,ω)

M∑
m=1

wmp
∗(θm, φm, ω)nm

}
.

(28)

B. Performance metrics

Four performance metrics are used to assess different array
topologies. In order to compare the performance of the arrays
numerically, the actual acoustic intensity, Ia(ω), and the
predicted acoustic intensity, Io(ω) are used.

1) Directional error: For certain applications like sound
source localization, source separation, and spatial audio cod-
ing, the directional accuracy of an array can be more im-
portant than its magnitude accuracy. Directional accuracy is
assessed by the angle between the actual and the predicted (i.e.
measured) time-averaged intensity vectors. This angle can be
obtained using the inner product of the actual and the predicted
intensity vectors such that:

ψ(ω) = arccos
〈Io(ω), Ia(ω)〉
‖Ia(ω)‖‖Io(ω)〉‖

(29)

If the actual and the predicted intensity vectors are coincident,
the angle between them is zero (i.e. ψ(ω) = 0).

2) Magnitude error: For applications with the specific
purpose of measuring sound power [26], magnitude of the
predicted intensity vector is also important. The difference of
the norms of the actual and the predicted intensity vectors can
be used as a measure of magnitude accuracy. The magnitude
error (in dB) is thus defined as:

ε(ω) = 10 log10

∣∣∣∣∣‖Ia(ω)‖ − ‖Io(ω)‖
‖Ia(ω)‖

∣∣∣∣∣ . (30)
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3) Isotropic operating range: Isotropic operating range,
fIOR, is defined as the maximum frequency below which
the magnitude error and the directional error are both less
than prescribed values. This frequency determines the upper
bound at which a uniformly accurate prediction of acoustic
intensity can be obtained. The isotropic operating range is thus
defined as the maximum frequency at which ε(ω) ≤ −10 dB
corresponding to a 10% magnitude error and ψ(ω) ≤ 1◦ for
all directions. Different definitions for different purposes are
possible. Note that isotropic operating range is defined only for
ideal arrays with perfectly matched components. The actual
frequency band for which an imperfectly matched array is
bounded at both a low and a high frequency.

4) Measurement bandwidth: Microphones, even with man-
ufacturer guaranteed tolerances are known to have substantial
phase response mismatches [27]. It is assumed that most
of these mismatches can be digitally equalized, albeit with
small remaining discrepancies [28]. Even then, the phase
mismatches of the individual array components are an im-
portant source of error [29][30]. These errors decrease the
measurement accuracy at low frequencies, and also depend on
the array size [13]. While simple solutions such as switching
or rotating a p-p probe and using the cross-spectrum of
the obtained signals [31] were previously proposed, they are
neither directly nor straightforwardly applicable to spherical
arrays discussed in this article.

Effects of component mismatches can be investigated using
the direction averaged error norm defined as:

χ(θ, φ, ω) = 10 log10

[
1

4π

∫∫
S0

‖Ia(ω)− Ĩo(ω)‖
‖Ia(ω)‖

dS0

]
,

(31)
where Ĩo(ω) is the intensity measured using the array with
mismatched components.

The low frequency bound, fLO, above which the array
has an acceptable accuracy, is defined in this article as the
frequency at which ∀(θ, φ, f < fLO) : χ(θ, φ, ω) ≥ − 10 dB.
The high frequency bound, fHI , below which the array has
an acceptable accuracy, is defined in this article as the highest
frequency at which ∀(θ, φ, f > fHI) : χ(θ, φ, ω) ≥ − 10 dB.
The measurement bandwidth is defined as fBW = fHI−fLO.

In the following section, only the phase differences between
individual components are investigated as the magnitude re-
sponses can be accurately equalized using digital filters to
obtain magnitude matched components at lower frequencies
(e.g. by using frequency warped filters [32][33]), but the phase
mismatches are harder to correct.

C. Numerical comparison

Four different aspects of the proposed arrays are numerically
assessed in this section. These are 1) the far-field performance,
2) the near-field performance, 3) the effects of array size, and
4) the measurement bandwidth. In the following discussion,
the arrays with 4, 12 and 20 elements use the finite element
quadrature, the arrays with 6, 14 and 26 elements use the
Lebedev quadrature, and the arrays with 8, 18 and 32 elements
use the product Gauss quadrature for calculating the particle
velocity. For conciseness, these arrays will be referred to

as KH-FEQ4, KH-FEQ12, KH-FEQ20, KH-LQ6, KH-LQ14,
KH-LQ26, KH-PGQ8, KH-LQ18, KH-PGQ32, respectively.
It should be noted that the acoustic free-field conditions are
assumed in the simulations given in this section. Note also that
the reported values are not exact due to the finite resolution of
the frequency and the source directions used in the simulations.

1) Far-field performance: The accuracy of the proposed
array topologies was assessed by simulating a monochromatic
point source positioned 10 m away from the arrays. This
way, the performance of the proposed arrays was quantified
for predominantly active sound fields. In all of the simulated
cases the array radius was selected as 3 cm. The individual
elements of the arrays were assumed to be perfectly matched,
representing the ideal case scenario.

Fig. 7 shows the directional errors for the proposed array
topologies up to 3 kHz. This frequency is slightly higher than
the maximum frequency (f = 2.8 kHz) for which the finite
difference approximation in (16) holds. The white contour
lines, where shown, represent the regions within which the
directional error is less than 1◦. The arrays with fewer than
12 elements (e.g. KH-FEQ4, KH-LQ6, and KH-PGQ8) have
a strongly direction dependent accuracy with errors up to
8.3◦. Arrays with 12 or more elements (e.g. KH-FEQ12, KH-
LQ14, KH-LQ18, KH-FEQ20, KH-LQ26, and KH-PGQ32)
achieve a significantly higher accuracy with less than 1◦

directional error for all simulated source frequencies. In all
cases, the directional error is minimum along the directions of
the individual components as well as their pairwise average
directions.

Fig. 8 shows the magnitude error in the horizontal plane for
different spherical array topologies up to 3 kHz. The black
contour lines show the region within which the magnitude
error is less than −10 dB. It may be observed that for the array
topologies having fewer than 12 elements the magnitude error
is not distributed uniformly and can be as high as −5 dB for
some directions. Such a strong dependence of accuracy on the
source direction is not desirable. In contrast, arrays with 12
or more elements will achieve a very uniform distribution of
magnitude error. In all cases, the magnitude error is maximum
along the directions of the individual components.

Fig. 9 shows the isotropic operating ranges (fIOR) of
different array topologies for a maximum directional error of
1◦ and a maximum magnitude error of −10, −15, and −20 dB,
respectively. If a magnitude error of −10 dB can be tolerated,
an operating range of up to 2.5 kHz can be achieved with
the arrays having 12 or more elements. Increasing the number
of array elements increases the directional accuracy but not
the magnitude accuracy. Since the isotropic operating range is
defined based on both the magnitude and the directional errors,
the operating range never exceeds 2.5 kHz. This indicates that,
with the given definition of isotropic operating range, the best
trade-off between the far-field operating range and the element
count is achieved by the KH-FEQ12 array.

2) Near-field performance: The pressure and the particle
velocity components of the sound field due to a point source
in the acoustic near-field are out of phase. Such a sound field
has both active and reactive components. In order to quantify
the performance of the proposed arrays in the near-field of a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Directional errors in the horizontal plane for a monochromatic point source positioned at 10 m, for the (a) KH-FEQ4, (b) KH-LQ6, (c) KH-PGQ8,
(d) KH-FEQ12, (e) KH-LQ14 (f) KH-LQ18, (g) KH-FEQ20, (h) KH-LQ26, and (i) KH-PGQ32 arrays. The radial axes which represent the frequency are
linearly scaled. The center of each disk represents zero frequency, and the outer edge represents 3 kHz. Top, left, bottom and right of each disk represent 0,
π/2, π, 3π/2 azimuth directions, respectively. The region within the white contour (where shown) represents the directional errors less than 1◦.

source, a point source at 10 cm distance from the arrays with
R = 3 cm was simulated. The accuracy of KH-FEQ4, KH-
LQ6, and KH-PGQ8 arrays are severely impaired either due
to magnitude errors or due to directional errors. The accuracy
of these arrays for the near-field source are even more strongly
direction dependent at low frequencies for which the effects
of near-field are stronger.

Descriptive statistics of the magnitude and directional errors
of different array topologies for frequencies up to 3 kHz are
given in Table I. It may be observed that all the arrays with 12
or more elements achieve a good accuracy with the maximum
error only slightly higher than −10 dB. As with the far-field
case, KH-FEQ12 array achieves the best trade-off between the
number of elements and the accuracy in near-field.

3) Array radius: Due to the implicit use of finite difference
approximations for calculating the particle velocity, the array
radius has a significant effect on the operating range of the
probe. This effect was investigated by simulating arrays with
radii between 2 cm and 10 cm for a point source positioned
at 10 m distance. Fig. 10 shows the isotropic operating
ranges, fIOR, for different array radii. It may be observed
that decreasing the array radius increases the operating range
as expected. It must be noted however that physical limitations
due to finite microphone size would prevent designing arrays
with very small radii. The operating ranges follow a similar
overall trend for different array sizes, but KH-FEQ12 array
provides the best trade-off between the operating range and
the number of elements.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Magnitude errors in the horizontal plane for a monochromatic point source positioned at 10 m, for the (a) KH-FEQ4, (b) KH-LQ6, (c) KH-PGQ8,
(d) KH-FEQ12, (e) KH-LQ14 (f) KH-LQ18, (g) KH-FEQ20, (h) KH-LQ26, and (i) KH-PGQ32 arrays. The radial axes which represent the frequency are
linearly scaled. The center of each disk represents zero frequency, and the outer edge represents 3 kHz. Top, left, bottom and right of each disk represent 0,
π/2, π, 3π/2 azimuth directions, respectively. The region within the black contour represents the magnitude errors less than −10 dB.

4) Measurement bandwidth: The robustness of the pro-
posed arrays for phase mismatches is evaluated and the low
and high frequency bounds as well as the measurement band-
widths for each array topology are numerically obtained in
this section.

Three cases are investigated: In the first case, phase mis-
matches are simulated for the KH-FEQ12 array (R = 3cm) by
applying a random, frequency-independent phase mismatch to
each component. The phase discrepancies come from normal
distributions with zero mean and the standard deviations of
0.2◦, 0.3◦, 0.4◦, and 0.5◦. In the second case, the array radii
of 2, 4, 6, 8 and 10 cm are simulated for the KH-FEQ12 array
and for a phase mismatch standard deviation of 0.3◦. In the
third case, all proposed array topologies are compared with
respect to their bandwidths for an array radius of 3 cm and

a phase mismatch with a standard deviation of 0.4◦1. In all
cases, monochromatic plane wave fields in different directions
around the array are simulated. Azimuth resolution is 6◦ and
elevation resolution is 12◦. The reported values are based on
the maximum direction averaged error norms observed for all
simulated directions.

Fig. 11 shows the direction averaged error norms for the
KH-FEQ12 array for a fixed array radius of 3 cm with different
levels of phase mismatch. The error for the perfectly matched
case is also shown for comparison2. The circles on each error
curve represent the low frequency bounds for the respective

1The simulated phase mismatches correspond to high levels of variation,
especially at low frequencies. Individual components of state-of-the-art in-
tensity probes typically have a maximum phase mismatch of 0.05◦ below
250 Hz [13].

2Observe that the error curve for the perfectly matched array is monoton-
ically increasing, and that the perfectly matched array does not have a low
frequency bound.
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TABLE I
DESCRIPTIVE STATISTICS OF THE MAGNITUDE ERRORS (IN DB) FOR A SOURCE IN THE ACOUSTIC NEAR FIELD (Rm = 10 CM)

Array Type εmax (dB) ε (dB) stdev[ε] (dB) ψmax ψ stddev[ψ]

KH-FEQ4 -4.30 -10.05 4.24 14.67 9.36 2.94

KH-LQ6 -5.95 -9.48 2.37 3.33 1.80 0.70

KH-PGQ8 -11.73 -17.42 4.48 2.21 1.13 0.43

KH-FEQ12 -9.74 -12.41 2.85 0.19 0.07 0.05

KH-LQ14 -9.81 -12.42 2.84 0.18 0.05 0.04

KH-PGQ18 -9.81 -12.39 2.83 0.16 0.05 0.03

KH-FEQ20 -9.90 -12.43 2.87 0.11 0.04 0.03

KH-LQ26 -9.96 -12.44 2.83 0.01 2× 10−3 2× 10−3

KH-PGQ32 -9.96 -12.44 2.82 0.01 2× 10−3 2× 10−3
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Fig. 9. Isotropic operating ranges for different array topologies with R =
3 cm and for different magnitude error bounds. The simulated point source
is positioned at Rs = 10 m.
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Fig. 11. Maximum direction averaged error norms and the low frequency
bounds for the KH-FEQ12 array for different levels of phase mismatch
between components. The array radius is R = 3 cm. The low frequency
bound for each level of phase mismatch is shown by a small circle. The error
for the perfectly matched case is also shown for comparison.

case where the direction averaged error norm is less than −10
dB. It may be observed that the main degrading effect of the
phase mismatches occurs at low frequencies. The error and
the lower frequency bound increase with the level of phase
mismatch, while the accuracy at higher frequencies converge
to that of the ideal case and are not significantly affected. The
low and high frequency bounds as well as the measurement
bandwidths are given in Table II.

Fig. 12 shows the direction averaged error norms for the
KH-FEQ12 array with different radii with a phase mismatch
having a standard deviation of 0.4◦. It may be observed that
the low and high frequency bounds as well as the measurement
bandwidth are inversely proportional to array radius. The
choice of the array radius is thus a matter of choosing the
frequency range of interest. The low and high frequency
bounds as well as the measurement bandwidths are given in
Table II.

Finally, different array topologies with a common radius of
3 cm and a phase mismatch standard deviation of 0.4◦ are
simulated. The results indicate that a significant gain over an
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Fig. 12. Maximum direction averaged error norms and the low frequency
bounds for the KH-FEQ12 array for different array radii and for a phase
mismatch with a standard deviation of 0.4◦. The low frequency bound for
each level of phase mismatch is shown by a small circle.

8-element array (KH-PGQ8) can be achieved by using a 12-
element array (KH-FEQ12). Among all the simulated array
topologies, the KH-FEQ12 array provides the best trade-off
between the element count and the achieved measurement
bandwidth. Although a slightly better low frequency accuracy
can be achieved, the additional bandwidth gain is not signifi-
cant for the arrays with greater number of elements. Table II
summarizes the low and high frequency bounds as well as the
bandwidths for these cases.

TABLE II
LOW AND HIGH FREQUENCY BOUNDS (fLO AND fHI ) AND

MEASUREMENT BANDWIDTHS (fBW ) OF THE PROPOSED ARRAY
TOPOLOGIES.

Array Type
R

(cm)
Phase

mismatch
fLO

(Hz)
fHI

(Hz)
fBW

(Hz)

KH-FEQ4 3 0.4◦ 347 1231 884

KH-LQ6 3 0.4◦ 281 1116 835

KH-PGQ8 3 0.4◦ 247 1224 977

KH-FEQ12 2 0.4◦ 221 3560 3339

3 0.2◦ 102 2375 2273

0.3◦ 109 2375 2266

0.4◦ 183 2375 2192

0.5◦ 232 2375 2143

4 0.4◦ 107 1799 1692

6 0.4◦ 76 1195 1119

8 0.4◦ 52 905 853

10 0.4◦ 43 716 673

KH-LQ14 3 0.4◦ 169 2384 2215

KH-PGQ18 3 0.4◦ 150 2382 2232

KH-FEQ20 3 0.4◦ 137 2392 2255

KH-LQ26 3 0.4◦ 119 2403 2284

KH-PGQ32 3 0.4◦ 118 2405 2287

5) Comparison with conventional arrays: Three types of
conventional arrays are discussed and compared with the KH-
FEQ12 array in this section. The first type is the tetrahedral
array embodying four pressures probes [34]. An example
to this type of an array is the Ono-Sokki Tetra-phone. The
second type is an octahedral array which embodies six pressure
probes [35]. A commercially available example is the G.R.A.S.
Vector Intensity Probe Type 50VI [36]. The third type is a
class of array designs based on a least-squares formulation
and embodies first-order directional microphones [37].

a) Ono-Sokki Tetra-phone: This array is composed of
four pressure microphones positioned at the vertices of a
tetrahedron [34][16][38]. The pressure at the center is approx-
imated as the average of the pressure signals recorded by these
microphones such that:

po(ω) =
1

4

4∑
k=1

pk(ω) (32)

where pk(ω) = p(xk, ω) and xk is the kth vertex of the
tetrahedron. The particle velocity components at the directions
of the vertices are given as:

vk(ω) = −(pk(ω)− po(ω))/(jωρ0R). (33)

These approximations correspond not to the actual particle
velocity at the center but at three different points R/2 away
from the center.

The particle velocity components in the axial directions are
calculated as [16]

vx(ω) = −
√

3

2
√

2
(v2(ω)− v3(ω))

vy(ω) = − 1

2
√

2
(2v1(ω)− v2(ω)− v3(ω)) (34)

vz(ω) = −1

4
(v1(ω) + v2(ω) + v3(ω)− 3v4(ω)) .

After obtaining the particle velocity vector, the time-
averaged acoustic intensity can be calculated using (28).

b) G.R.A.S. Type 50VI: These arrays have octahedral
topology and embody three p-p pairs positioned along the three
orthogonal axes [36]. The particle velocity along each axial di-
rection is calculated using the finite-difference approximation
given in (16). The pressure at the center is calculated as the
average of the pressure signals from the six individual pressure
probes. Brüel & Kjær Type 5356 also has the same topology
and uses a similar finite-difference approach [35].

c) Least-squares based (LS) arrays: Least-squares based
arrays [37] embody first-order directional microphones posi-
tioned at diametrically opposite points on an open sphere with
their acoustic axes facing radially outwards. An omnidirec-
tional microphone at the center is used to measure the actual
pressure. The assumptions are made that the source is in the
acoustic far-field and that the array radius is much smaller
than the quarter wavelength. If all the microphones have the
ideal first-order directivity function, Γ(θ) = (1−α) +α cos θ
and are facing radially outwards, the acoustic intensity can be
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calculated as:

Io(ω) ≈ 3po(ω)

2ρ0cKα

K∑
k=1

pk,α(ω)nk, (35)

where pk,α(ω) is the signal recorded by the kth first-order
directional microphone, po(ω) is the pressure at the center,
nk is the unit vector from the position of the kth microphone
to the center, and K is the total number of microphones
on the open sphere. It may be observed from (35) that the
predicted intensity is not a function of array radius. This
desirable property is maintained as long as the array radius
is less than the quarter wavelength. This means that the least-
squares based arrays are subject to the same constraints as the
other arrays at high frequencies but they are not significantly
affected at low frequencies by component mismatches.

While it is possible to have an arbitrary distribution of
microphone pairs as long as they are positioned at dia-
metrically opposite points, regular polyhedra (i.e. octahedral,
cubic, icosahedral, and dodecahedral topologies) are preferred
in order to achieve a spherically symmetric distribution of
directional and magnitude errors. The individual elements
can have any first-order directivity. The octahedral LS array
topology with cardioid microphones was previously employed
for recording sound fields for the purpose of loudspeaker-
based auralization [39]. An ideal cardioid directivity is also
employed in the simulations in the following section.

d) Measurement bandwidths of conventional arrays: In
order to compare the proposed arrays with the conventional
arrays described above, a fixed array radius of 3 cm is cho-
sen. Monochromatic plane waves incident from all directions
around the arrays were simulated. The azimuth and elevation
resolution were 6◦ and 12◦, respectively. A comparison of two
widely used conventional arrays (Ono-Sokki Tetra-probe and
G.R.A.S. Type 50VI), four least-squares (LS) arrays with the
proposed KH-FEQ12 array is given. Phase mismatches are
obtained from a normal distribution with a standard deviation
of 0.4◦

The low and the high frequency bounds as well as mea-
surement bandwidths for a maximum direction averaged error
norm of −10 dB are given in Table III. All of the simulated
conventional arrays have lower bandwidths and perform poorly
in comparison with the KH-FEQ12 array. It may be observed
that the KH-FEQ12 array has a bandwidth more than twice
as high as the LS array with the same number of elements.
The major advantage of LS arrays is their accuracy at low
frequencies which does not suffer significantly from phase
mismatches. The higher bandwidth achieved by the KH-
FEQ12 array is mainly due to the fact that the finite difference
approximation to particle velocity is obtained using pressure
probes separated by R as opposed to 2R in the LS arrays.

V. DISCUSSION AND CONCLUSIONS

Spherical microphone arrays can be used to measure the
acoustic intensity in 3-D. This article presented a theoretical
analysis of such arrays in terms of their performance in the
acoustic far- and near-fields, size, and measurement band-
width.

TABLE III
LOW AND HIGH FREQUENCY BOUNDS (fLO AND fHI ) AND

MEASUREMENT BANDWIDTHS (fBW ) OF PHASE-MISMATCHED
CONVENTIONAL 3-D ACOUSTIC INTENSITY PROBES IN A PLANE WAVE

FIELD.

Array type
Element

count
fLO

(Hz)
fHI

(Hz)
fBW

(Hz)

Ono-Sokki [34][16][38] 4 380 984 596

G.R.A.S. Type 50VI [36] 6 284 910 626

Octahedral (LS) [39][37] 6 + 1 d.c. 638 638

Cubic (LS) [37] 8 + 1 d.c. 752 752

Icosahedral (LS) [37] 12 + 1 d.c. 1048 1048

Dodecahedral (LS) [37] 20 + 1 d.c. 1051 1051

Icosahedral (KH-FEQ12) 12 + 1 183 2375 2192

First, the calculation of the particle velocity was formulated
using the Kirchhoff-Helmholtz integral on an open spherical
surface. Then, the formulation was simplified for the condition
where the pressure is known at the center of the open sphere.
Numerical quadrature schemes to obtain an approximation to
the particle velocity at the center were discussed and the
corresponding array topologies were presented. These array
topologies were then numerically evaluated for their accuracy,
operating range, effects of the array radius, and component
mismatches.

The main findings are as follows:

1) The directional dependence of the error is very promi-
nent for the array topologies with fewer than 12 ele-
ments. This dependence was not observed for the array
topologies with 12 or more elements.

2) The isotropic operating range was defined for perfectly
matched arrays as the highest frequency for which the
magnitude and directional errors are both uniformly
less than given magnitude and angle thresholds. It was
observed that a good accuracy with at most −10 dB
magnitude error and at most 1◦ directional error is
possible up to around 2.5 kHz for an array radius of 3 cm
for arrays with 12 or more elements. Isotropic operating
range was observed to be inversely proportional to array
radius.

3) The effects of phase mismatches between array elements
were numerically investigated. The direction averaged
error norm was defined as the norm of the difference
vector between the actual intensity and the intensity
measurement obtained from a phase mismatched array.
The measurement bandwidth was defined as the fre-
quency range where this error is less that −10 dB.
Numerical simulations with small phase mismatches
on individual array elements were carried out. It was
observed that phase mismatches impair the accuracy
of the array at low frequencies while the accuracy at
high frequencies is not significantly affected. The best
trade-off between the number of microphones and the
measurement bandwidth was achieved by the 12-element
array. Arrays with more than 12 elements provided only
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minor improvements.
4) A numerical comparison with conventional arrays re-

vealed that the proposed arrays increased the measure-
ment bandwidth of intensity measurements by a factor
of two.
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vol. 3, pp. 3–39, 1982.
[3] F. Jacobsen, “A note on instantaneous and time-averaged active and

reactive sound intensity,” Journal of Sound and Vibration, vol. 147, no. 3,
pp. 489 – 496, 1991.

[4] R. Hickling, W. Wei, and R. Raspet, “Finding the direction of a sound
source using a vector sound-intensity probe,” J. Acoust. Soc. Am.,
vol. 94, no. 4, pp. 2408–2412, 1993.

[5] S. Tervo, “Direction estimation based on sound intensity vectors,” in
Proc. of European Signal Process. Conf. (EUSIPCO 2009), 2009, pp.
700–704.
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