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Multichannel Dereverberation Theorems and
Robustness Issues
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Abstract—Multichannel dereverberation amounts to the inver-
sion of a multiple-input/multiple-output linear time-invariant sys-
tem. In this paper necessary and sufficient conditions for perfect
dereverberation using stable and FIR filters are established. It is
then shown that the inverse system given by the pseudoinverse of
the original transfer function matrix exhibits a noise reduction
property. A necessary and sufficient condition under which this
pseudoinverse system is FIR is also given. Further, an FIR
approximation to the pseudoinverse system is considered and the
effects of the length of this approximation on the dereverberation
accuracy are investigated. Finally, an analytical and numerical
assessment of the dependence of the dereverberation accuracy
on the accuracy of the acquisition of room impulse responses is
provided.

Index Terms—Multichannel dereverberation, MIMO systems,
room acoustics

I. INTRODUCTION

FOR a single source and single microphone recording
setup, a room acts as a single-input/single-output lin-

ear, time-invariant system. The audio signal recorded by the
microphone is the signal emitted by the source convolved
with the corresponding room impulse response (RIR). An
RIR consists of the direct path, early reflections, and late
reverberation components, and can be modeled as a long FIR
filter. Room acoustics may have detrimental effects on the
quality of audio recordings by smearing the original audio
source signal in time and changing its spectral properties.
The effects of room acoustics can be compensated for or
eliminated by means of signal processing techniques [1], [2].
Based on the availability of the knowledge of the underlying
acoustical system, these methods can be classified into two
categories: blind and non-blind methods. Blind methods are
generally based on a priori statistical hypotheses and not on
the explicit knowledge on the acoustics of the room [3]. In
contrast, non-blind methods are based on the use of empirical
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data from acoustical measurements or estimation. In this paper,
we consider non-blind multichannel dereverberation.

What makes the dereverberation problem challenging even
when underlying impulse responses are known is that the RIRs
are very long, which makes their inversion computationally
demanding. They are at the same time generally non-minimum
phase [4], which means that they do not have stable exact
inverse systems which are FIR or causal [5]. Early attempts, in
the context of the mathematically equivalent problem of room
equalization, concentrated on the equalization of recorded
signals via correcting the spectral notches in magnitude re-
sponses of room transfer functions either by spatial averaging
of the outputs of multiple microphones [6] or by correcting
the magnitude response [7]. Such methods reduce spectral
coloration but are not effective in reducing reverberation in
the time domain. It was shown that stable but non-causal
FIR filters can be designed to model the inverse responses
for equalization and dereverberation [8], [9]. The problem
becomes much more tractable if multiple recordings of a
single source signal are available. In such a situation, perfect
dereverberation using finite impulse response (FIR) filters is
possible as long as impulse responses at microphone positions
have no zeros in common [10].

When multiple sources are recorded using multiple micro-
phones, the signal recorded by each microphone is a convo-
lutive mixture of all source signals. Early work on multichan-
nel dereverberation used phase aligned addition at different
channels to increase the level of the original signal and to
reduce reverberation [11]. Another non-blind multichannel
dereverberation method used frequency-domain inversion with
regularization to obtain FIR inverse filters [12]. A recent
work approaches the problem by optimizing inverse filters
to minimize a combination of the dereverberation error and
perturbation caused by additive noise with particular known
statistics [13].

In this paper a necessary and sufficient condition for perfect
dereverberation using stable filters is established. When the
number of microphones is larger than the number of source
signals, the stable inverse system is not unique and may not
be causal. It is therefore of interest to know when perfect
dereverberation using FIR filters is possible, and a necessary
and sufficient condition for FIR dereverberation is established.
While all inverse systems perform exact dereverberation under
ideal conditions, they have a different effect on additive noise.
It is then shown that the inverse system given by the pseudoin-
verse of the room transfer function matrix has a desirable noise
reduction property, and a necessary and sufficient condition for
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the pseudoinverse to be FIR is also derived. The filters of the
pseudo inverse system are in general IIR and specified by a
very large number of numerator and denominator coefficients,
hence it is of interest to find FIR approximations and compute
these approximations in a numerically efficient manner. A
DFT-based method for finding an FIR approximation to the
pseudoinverse proposed by Kirkeby et al. [12] is then reviewed
and a numerical assessment of the effects of the size of the
DFT employed and the length of the approximate filters on
the accuracy of the dereverberation is provided.

Non-blind methods assume the knowledge of room impulse
responses, however these are acquired only within a certain
limited accuracy. Furthermore rooms are only weakly station-
ary systems [14], and variations of RIRs, due to temperature
changes for instance, cause problems in echo cancellation [15]
and dereverberation [16]. Complex smoothing [16], [17], [18]
of RIRs was proposed to alleviate these problems. It was
also shown that even small changes of positions of sources
and microphones can cause significant performance problems
in room response inversion [19] and dereverberation [20],
[21]. Spatial average equalization was proposed as a possible
solution to this problem [22]. In this article we present a
theoretical assessment of the effects of RIR perturbations
on the dereverberation accuracy for the inversion using the
pseudoinverse system. Then we focus on perturbations which
can be modelled as delay modulation and additive noise and
present some experimental results which suggest that the
dereverberation using the pseudoinverse system is not very
sensitive to RIR perturbations of this kind.

Notation: A polynomial matrix H(z) is said to be
unimodular if its determinant is a constant. H̃(z) denotes
the matrix obtained by transposing H(z), conjugating all the
coefficients and replacing z by z−1.

II. MULTICHANNEL DEREVERBERATION THEOREMS

Let us consider M microphones recording signals emitted
by L sources, where L ≤ M . The signal Ym(z) captured by
the mth microphone is a convolutive mixture of source signals
Xl(z),

Ym(z) =
L�

l=1

Hml(z)Xl(z) (1)

where Hml(z) is the room transfer function between the mth

microphone and the lth source. The problem addressed in
this article is the inversion of this MIMO system, that is, the
dereverberation of the recorded signals Y1(z), . . . , YM (z) to
obtain source signals X1(z), . . . , XL(z). We will assume that
room impulse responses are FIR, albeit very long FIR filters.
It should be noted that there exist methods to model multiple
RIRs as IIR filters with a set of common poles [23], however,
in this paper we pursue modelling using long FIR filters.

The convolutive mixture in (1) can be represented in matrix
form as Y(z) = H(z)X(z), where

[H(z)]ij = Hij(z), i = 1, . . . ,M, j = 1, . . . , L ,

X(z) = [X1(z) . . . XL(z)]
T andY(z) = [Y1(z) . . . YM (z)]T .

The deconvolution requires finding an equalization filter ma-
trix G(z),

[G(z)]ij = Gij(z), i = 1, . . . , L, j = 1, . . . ,M ,

such that the combined transfer function of the cascade of the
system matrix and the equalization filter matrix G(z) is an
identity,

G(z)H(z) = I .

Note that impulse responses corresponding to transfer func-
tions Hml(z), due to non-perfectly reflective room boundaries,
exhibit exponential decay and are therefore square-summable.
We restrict considerations to finite energy source signals.

A necessary and sufficient condition for the existence of
a stable dereverberation system is given in the following
theorem.

Theorem 1: Perfect deconvolution using stable filters is pos-

sible if and only if H(z) is of full rank everywhere on the unit

circle.

Proof: Assume that H(ejω) is singular at a frequency
ω = ω0. Then there exists a unit-norm vector
c = [c1 . . . cL]T , �c�2 =

�
L

l=1 |cl|2 = 1, such
that H(ejω0)c = 0. Denote by Hc

1(e
jω), . . . , Hc

M
(ejω)

filters [Hc

1(e
jω) . . . Hc

M
(ejω)]T = H(ejω)c, and let

ak(n), k = 1, 2, . . . be a sequence of signals given
in the Fourier domain by Ak(ejω) =

√
kπ, ω ∈ Ωk,

where Ωk = {ω : ω0 − 1
2k ≤ |ω| ≤ ω0 + 1

2k},
and Ak(ejω) = 0, ω /∈ Ωk. These signals satisfy
1
2π

�
π

−π
|Ak(ejω)|2dω = 1 for all k. Consider the sequence

of vector signals Xk(z) = [Xk,1(z) . . . Xk,L(z)]T =
cAk(z). If Xk(z) is the input to H(z) then the
corresponding output Yk(z) = [Yk,1(z) . . . Yk,M (z)]T

is given by [Yk,1(ejω) . . . Yk,M (ejω)]T =
[Hc

1(e
jω), . . . , Hc

M
(ejω)]TAk(ejω) and satisfies

|Yk,m(ejω)| = 0, ω /∈ Ωk, for all m, 1 ≤ m ≤ M ,
and all k. Note further that filters Hc

m
(z) have finite

impulse responses, and that therefore all frequency responses
Hc

m
(ejω) are continuous in ω. This continuity implies that

since Hc

m
(ejω0) = 0, for all m = 1, . . . ,M , and we consider

finitely many filters Hc

m
(ejω), for any δ > 0, there exists an

�δ such that |Hc

m
(ejω)| < δ for ω0 − �δ ≤ |ω| ≤ ω0 + �δ for

all m = 1, . . . ,M . Hence, given a δ, for any k > 1/(2�δ),
M�

m=1

1

2π

�
π

−π

|Yk,m(ejω)|2dω =

M�

m=1

1

2π

�

ω∈Ωk

|Yk,m(ejω)|2dω ≤

M�

m=1

1

2π

�

ω∈Ωk

kπδ2dω = Mδ2 .

This proves that limk→∞
1
2π

�
M

m=1

�
π

−π
|Yk,m(ejω)|2dω = 0.

At the same time the corresponding sequence of input signals
satisfies 1

2π

�
L

l=1

�
π

−π
|Xk,l(ejω)|2dω = �c�2 = 1 for all

k. Assume that there exists a system G(z) which performs
perfect reconstruction of signals X(z) from their convolutive
mixtures Y(z) = H(z)X(z) as X(z) = G(z)Y(z). Then,
in order to have the combined energy of signals X̂k(z) =
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G(z)Yk(z) equal to the combined energy of signals Xk,
which is a necessary condition for X̂k(z) = Xk(z), while
the energy of signals Yk(z) tends to zero, at least one of
Glm(ejω) must be unbounded at ω0, i.e. at least one of the
filters of G(z) must have a pole on the unit circle. This
proves that the condition of the theorem is necessary for
stable dereverberation. To prove the sufficiency, assume that
H(ejω) is of full rank for every ω. Then, H̃(z)H(z) is also
of full rank for all z on the unit circle. The pseudoinverse
H

†(z) =
�
H̃(z)H(z)

�−1 H̃(z) of H(z), therefore, has no poles
on the unit circle, hence it is a stable inverse of H(z). �

Stable inversion stated by Theorem 1 is not necessarily
FIR or causal. If the stable inverse is IIR or not causal, it
needs to be approximated by an FIR system to perform stable
approximate dereverberation with some delay. It is therefore of
interest to know when an exact FIR inverse exists. A condition
for FIR dereverberation will be established here based on the
Smith form [24] of H(z). An M × L (M ≥ L) polynomial
matrix H(z) can be decomposed as

H(z) = UH(z)[DH(z) 0]TVH(z),

where UH(z) and VH(z) are M × M and L × L unimod-
ular matrices, respectively, DH(z) is a diagonal polynomial
matrix, DH(z) = diag(d1(z), d2(z), . . . , dL(z)), and 0 is the
L × (M − L) zero matrix. UH(z) and VH(z) are products
of matrices which correspond to elementary row and column
operations, respectively, and have one of the following three
forms: i) a permutation matrix; ii) a diagonal matrix with
elements on the diagonal equal to 1, except for one which is
a different nonzero constant; iii) a matrix with 1s on the main
diagonal and one polynomial entry off the diagonal. UH(z)
and VH(z) can further be selected such that polynomials
di(z) are monic and di(z) is a factor of di+1(z). Such a
matrix [DH(z) 0]T is referred to as the Smith normal form
of H(z). A sufficient condition for FIR dereverberation in
the case when L = 1, and in the case of arbitrary L with
M = L+1 has been given by Miyoshi and Kaneda [10]. The
next theorem establishes a necessary and sufficient condition
for FIR dereverberation for arbitrary L and M , M ≥ L.

Theorem 2: Perfect dereverberation using FIR filters is pos-

sible if and only if the polynomials in the Smith form of H(z)
are monomials.

Proof: Let G(z) be an FIR inverse of H(z), and
let H(z) = UH(z)[DH(z) 0]TVH(z) and G(z) =
UG(z)[DG(z) 0]VG(z) be the Smith form decompositions
of H(z) and G(z). Since G(z)H(z) = I, it follows that

detG(z) detH(z) = detUG(z)

· det([DG(z) 0]VG(z)UH(z)[DH(z) 0]T )

· detVH(z) = 1 .

This equality and the fact that UG(z) and VH(z) are unimod-
ular further imply that

det([DG(z) 0]VG(z)UH(z)[DH(z) 0]T ) = const.

On the other hand

[DG(z) 0]VG(z)UH(z)[DH(z) 0]T = DG(z)C(z)DH(z) ,

where C(z) is the L × L upper left corner submatrix of
VG(z)UH(z). Hence

detDG(z) detC(z) detDH(z) = const.

Since detDG(z) is a polynomial, by the definition
of the Smith form, detC(z) is a polynomial be-
cause C(z) is a submatrix of a polynomial matrix,
detDG(z) detC(z) detDH(z) = const. is possible only if
detDH(z), detC(z) and detDG(z) are all monomials. This
holds because the product of three polynomials (in z and z−1)
can be a constant only if all three polynomials are monomials.
Finally, this implies that all polynomials in detDH(z) are also
monomials. To prove that the condition is sufficient, assume
that all polynomials di(z) in the Smith form of H(z) are
monomials. Then

G(z) = V
−1
H

(z)

�
diag

�
1

d1(z)
, . . . ,

1

dL(z)

�
0

�
U

−1
H

(z)

is an inverse of H(z) and is an FIR matrix since UH(z) and
VH(z) are unimodular and di(z) are monomial. �

When a stable inverse system exists and M > L, that
inverse is not unique. While all inverse systems perform
perfect deconvolution in noise-free conditions, they affect
additive noise differently. To gain intuition about the impact
of the choice of the inverse to noise robustness, consider
a multiple-input/multiple-output linear time-invariant system
described by a transfer matrix H(z). This system is an operator
which maps a vector X(z) of L finite energy signals to a
vector Y(z) = H(z)X(z) of M finite energy signals. If the
operator is invertible, than this mapping is one-to-one from X ,
the space of vectors of L finite energy signals, to R{H(z)},
the range of H(z). When M > L, R{H(z)} is a proper
subspace of Y , the space of vectors of M finite energy signals.
Consider now reconstructing a vector of input signals X(z)
from the corresponding output vector Y(z) = H(z)X(z)
degraded by some additive error/noise EY (z) by applying
an inverse G(z) of H(z). This reconstruction of X(z) from
noisy Y(z) gives X(z)+EX(z) = G(z)Y(z)+G(z)EY (z)
where EX(z) = G(z)EY (z). Note that Y(z) + EY (z) is
not necessarily in the range of H(z), and if that is the
case, the image of the reconstructed signal X(z) + EX(z)
under H(z) is Y(z) + ÊY (z), where ÊY (z) = H(z)EX(z),
which is different from EY (z). Hence, G(z) implicitly first
projects Y(z) + EY (z) onto the range of H(z), which gives
Y(z) + ÊY (z), and then finds the vector in X whose image
under H(z) is Y(z) + ÊY (z). Hence, the reconstruction
effectively maps EY (z) to ÊY (z), which may reduce it, or
amplify it, or leave it unchanged (the latter happens when
Y(z) + ÊY (z) is in the range of H(z)), and that is the
way in which the choice of the inverse affects the error. The
mapping from ÊY (z) to EX(z) is completely determined by
the original operator H(z). The effects of the choice of inverse
system on ÊY (z) and EX(z) are illustrated by the following
simple example.

Example 1: Let us consider the case of a single input, X(z),
and M outputs, Y(z) = [Y1(z) . . . YM (z)], and assume

H(z) = [1 . . . 1]T , such that Ym(z) = X(z), m =
1, . . . ,M . This is an extremely well conditioned system and



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, MONTH 2011 4

any system of filters G(z) = [G1(z) . . . GM (z)] such that�
M

m=1 Gm(z) = 1 will be an inverse of H(z). One possible

inverse is given by Go(z) = [ 1
M

1
M

. . . 1
M
] and another inverse

by Gs(z) = [M − 1 . . . − 1].
Consider reconstructing X(z) from Y(z) + EY (z), where

EY (z) = [EY,1(z) . . . EY,M (z)] is a vector of noise

signals. If Go(z) is used for the dereverberation, then the

reconstructed signal is X(z) + EX(z), where EX(z) =��
M

m=1 EY,m(z)
�
/M . Consequently

�
π

−π

|EX(ejω)|2dω ≤ 1

M

M�

m=1

�
π

−π

|EY,m(ejω)|2dω , (2)

i.e. the energy of the error in the reconstructed signal is smaller

than the energy of the error in the recorded signals. X(z) is

effectively reconstructed from signals Y(z) + ÊY (z), where

ÊY (z) = H(z)EX(z), i.e. Go(z)(Y(z) + ÊY (z)) = X(z) +
EX(z). This effective error is in this case ÊY,1(z) = ÊY,2(z) =

. . . = ÊY,M (z) =
��

M

m=1 EY,m(z)
�
/M , and it satisfies:

M�

m=1

�
π

−π

|ÊY,m(ejω)|2dω ≤
M�

m=1

�
π

−π

|EY,m(ejω)|2dω , (3)

i.e. its energy is less than or equal to the original error energy.

These last two inequalities follow immediately from elementary

vector norm inequalities and hold for every error of bounded

energy.

Consider now reconstructing X(z) using Gs(z) and assume

that noise is present only in Y1(z), i.e. EY,2(z) = . . . =
EY,M (z) = 0. The reconstructed signal is then given by

X(z) + EX(z), where EX(z) = MEY,1(z). For this inverse

and this noise we then have

�
π

−π

|EX(ejω)|2dω = M2

�
π

−π

|EY,1(e
jω)|2dω

= M2
M�

m=1

�
π

−π

|EY,m(ejω)|2dω ,

i.e. the energy of the reconstruction error is significantly higher

than the energy of the error in the recorded signals. In this

case, the signal is effectively reconstructed from Y(z) +
ÊY (z), where again ÊY (z) = H(z)EX(z), which develops

as ÊY,1(z) = ÊY,2(z) = . . . = ÊY,M (z) = MEY,1(z). This

effective error satisfies:

M�

m=1

�
π

−π

|ÊY,m(ejω)|2dω = M3
M�

m=1

�
π

−π

|EY,m(ejω)|2dω ,

(4)
i.e. its energy is significantly higher than the original error

energy.

Ideally we would like to use an inverse of H(z) which has
the property that the energy of the effective noise ÊY (z) is
always smaller or equal than the energy of the original noise
EY (z). An inverse which has this property is provided by the
left pseudo-inverse of H(z),

H
†(z) =

�
H̃(z)H(z)

�−1 H̃(z) ,

where H̃(z) denotes the matrix obtained by transposing H(z),
conjugating all the coefficients and replacing z by z−1. This
result is established by the following theorem.

Theorem 3: Let X(z) be a vector of bounded energy signals

at the input of a linear time-invariant system H(z), and let

Y(z) be the vector of corresponding output signals, Y(z) =
H(z)X(z). Assume that H(z) allows for inversion using a

system of stable filters and let X(z) + EX(z) be obtained

by applying H
†(z) to Y(z) degraded by some additive error

EY (z), X(z) + EX(z) = H
†(z)Y(z) +H

†(z)EY (z). Then,

the effective error signal ÊY (z) = H(z)EX(z) satisfies

M�

m=1

�
π

−π

|ÊY,m(ejω)|2dω ≤
M�

m=1

�
π

−π

|EY,m(ejω)|2dω (5)

Proof: When H(z) has a stable inverse as specified in Theorem
1, then H(z) is a frame operator [25], [26] that maps the space
of finite energy vector signals X(z) = [X1(z) . . . XL(z)]T

onto a subspace R{H(z)} of the space of finite energy vector
signals Y(z) = [Y1(z) . . . YM (z)]T . The pseudoinverse
system H

†(z) is then the operator which is the minimal
dual of the frame operator H(z) [25], [26], and therefore
when applied to an arbitrary finite energy vector signal
Y(z) + EY (z), H

†(z) implicitly performs orthogonal
projection of Y(z) + EY (z) onto R{H(z)} [25]. Hence
ÊY (z) is the orthogonal projection of EY (z) onto R{H(z)},
and therefore its norm, and consequently energy, is smaller
or equal than the energy of EY (z). �

This result does not mean that the pseudoinverse system
performs maximal reduction of every noise. However, if an
inverse system is optimized to maximally reduce noise of
a given type, it may amplify the effect of other types of
perturbation. The psudoinverse system is guaranteed to reduce,
or at least not amplify, any type of finite energy error. An
alternative approach to achieving noise robustness would be
to optimize a balance between dereverberation error and error
caused by noise for a given filter length and noise statistics.
That approach has been recently investigated in the context of
speech dereverberation in the case of one source signal [13].

An arbitrary FIR inverse of H(z), provided it exists, is not
necessarily its pseudoinverse, and the pseudoinverse may not
be FIR. A condition under which the pseudoinverse is FIR is
established in the following theorem.

Theorem 4: The pseudoinverse of H(z) is an FIR system if

and only if H̃(z)H(z) is a unimodular matrix, that is, if and

only if det(H̃(z)H(z)) = const.
Proof: Assume that H

†(z) is a polynomial matrix. Let
H(z) = U(z)[D(z) 0]TV(z) be the Smith form decom-
position of H(z), where D(z) = diag(d1(z), . . . , dL(z)).
Then H

†(z) = V
−1(z)[D−1(z)A−1(z) 0]Ũ(z), where A(z)

is the upper-left corner L × L submatrix of Ũ(z)U(z).
Hence, V(z)H†(z)Ũ−1(z) = [D−1(z)A−1(z) 0]. No-
tice that since U(z) is unimodular, the left hand side of
the last expression is a polynomial matrix, and therefore,
D

−1(z)A−1(z) is also a polynomial matrix. Since both
D

−1(z)A−1(z) and A(z)D(z) are polynomial matrices and
det (A(z)D(z)) det

�
D

−1(z)A−1(z)
�
= 1, det (A(z)D(z))
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must be a monomial, and that is only possible if all polyno-
mials on the diagonal of D(z) are monomials. Further, using
some elementary matrix manipulations it can be shown that

H
†(z)Ũ−1(z)[(D̃−1(z)Ṽ−1(z))T 0]T = (H̃(z)H(z))−1 .

Since polynomials on the diagonal of D(z) are monomials,
the left hand side of this equation is a polynomial matrix, and
therefore, (H̃(z)H(z))−1 must also be a polynomial matrix.
Because both (H̃(z)H(z))−1 and (H̃(z)H(z)) are polynomial
matrices the determinant of H̃(z)H(z) must be a monomial,
det(H̃(z)H(z)) = czk. However, if det(H̃(z)H(z)) = P (z)
where P (z) is a polynomial in z, then P (z) must satisfy
P̃ (z) = P (z). The only monomial which satisfies this is
P (z) = const. This proves that if H

†(z) is FIR, then
H̃(z)H(z) must be unimodular. To prove the sufficiency of
the condition note that H̃(z)H(z) is a polynomial matrix. If
furthermore det(H̃(z)H(z)) = const, then (H̃(z)H(z))−1

must be a polynomial matrix since its entries are products
of polynomials. Hence, H

†(z) =
�
H̃(z)H(z)

�−1 H̃(z) is a
product of two polynomial matrices, and therefore it must be
a polynomial matrix. �

In the case of one source signal, L = 1, perfect recon-
struction using FIR filters is possible if and only if filters
Hm1(z), m = 1, . . . ,M have no zeros in common, and then
the solution for inverse FIR filters of order smaller than the
order of filters Hm1(z) is unique. This result is known in
the context of deconvolution of audio signals as multiple-
input/output inverse theorem (MINT) [10]. The pseudoinverse
is given by [27]

Gm1(z) =
Hm1(z−1)

�
M

m=1 Hm1(z)Hm1(z−1)
,

and these filters are FIR if and only if room impulse responses
are power complementary

M�

m=1

Hm1(z)Hm1(z
−1) = const.

These theorems indicate that the deconvolution problem is
nontrivial, that solutions, when they exist, come in different
flavors, and point in the direction of the pseudoinverse of H(z)
or some FIR approximation thereof as a numerically efficient
and robust inverse solution.

III. NUMERICAL ISSUES

The previous section provided an in-depth analysis of theo-
retical aspects of multichannel dereverberation. In this section
we focus on practical aspects. In particular, numerically effi-
cient inversion of the room transfer function is considered and
the sensitivity of dereverberation to RIR acquisition errors is
investigated.

A. Fast inversion algorithm
Considerations in the previous section point out that not

every stable inverse of a room response necessarily exhibits de-
sired noise reduction behavior. The inverse that always reduces
additive noise is given by the pseudoinverse of H(z), and

under certain conditions the pseudoinverse is FIR. When RIRs
are very long, the exact computation of the pseudoinverse of
H(z), and the verification of the conditions for FIR inversion
may not be computationally tractable. Hence a fast algorithm
to find an FIR approximation of the pseudoinverse is of a great
importance. Kirkeby et al. [12] propose the following DFT
approach. Consider the N -point discrete Fourier transform
(DFT) of the system matrix H(z): H(ej

2π
N k), k = 0, ..., N−1.

The N -point DFT of the pseudoinverse system is given by

H
†(ej

2π
N k) =

�
H̃(ej

2π
N k)H(ej

2π
N k)

�−1
H̃(ej

2π
N k) ,

and an N -tap FIR approximation of the filters of the pseudoin-
verse can be obtained by applying the N -point inverse DFT
to H

†(ej
2π
N k), k = 0, ..., N − 1, giving filters

ĥ†
ml

(n) = IDFT{[H†(ej
2π
N k)]ml, k = 0, . . . , N − 1} . (6)

Impulse responses h†
ml

(n), m = 1, ..,M, l = 1, .., L, of
the exact pseudoinverse and their approximations ĥ†

ml
(n) are

related according to [5]:

ĥ†
ml

(n) =
�

i∈ZZ

h†
ml

(n− iN), n = 0, . . . , N − 1 . (7)

If N is shorter than the length of the exact pseudoinverse
filters, which is always the case when the actual pseudoinverse
is IIR, the FIR approximation obtained in this manner is a
time-aliased version of the desired inverse system. The length
N of the DFT is an important design parameter, which should
be set so as to achieve a satisfactory compromise between
the accuracy, which requires low aliasing and hence large N ,
and low implementation complexity and system delay, which
require small N .

As a benchmark, we propose the DFT size N equal to the
order of the polynomial in the denominator of H̃(z)H(z), so
that the discretization in frequency preserves all the infor-
mation about the denominator of filters in H

†(z). This rule
suggests the DFT size

N = 2L(Lh − 1) + 1 (8)

where Lh is the length of room impulse responses. The length
of the corresponding inverse filters would therefore also be
Lg = N. Note that the DFT size suggested here is one half of
the DFT size proposed by Kirkeby et al. [12]. If a lower inver-
sion accuracy is acceptable, smaller DFT sizes may be used
to decrease computational requirements both for filter design
and real-time implementation. Alternatively, FIR inverse filters
obtained using a given large N may be symmetrically trun-
cated to decrease the run time computational requirements of
the system. The effects of these two approaches to shortening
inverse filters are assessed numerically in Section IV.

B. Sensitivity to errors in room impulse responses
Non-blind deconvolution methods implicitly assume a per-

fect knowledge of room impulse responses. RIRs are however
acquired with a limited accuracy. In this section we provide
a theoretical assessment of the impact of these errors on
the dereverberation accuracy; an experimental assessment is
presented in the next section.
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Let Ĥij(z) be the acquired room transfer functions used to

compute the inverse system Ĝ(z) =
�
˜̂H(z)Ĥ(z)

�−1 ˜̂H(z), and
let the actual transfer functions be Hij(z). The deconvolution
using Ĝ(z) gives signals X̂i(z) which differ from the desired
signals Xi(z). Corresponding errors �i(ejω) = X̂i(ejω) −
Xi(ejω) are given in the Fourier domain by

�i(e
jω) =

M�

m=1

L�

l=1

Ĝim(ejω)∆Hml(e
jω)Xl(e

jω)

where ∆Hml(ejω) = Hml(ejω)− Ĥml(ejω). To separate the
effects of input signals, inverse filters and RIR inaccuracies on
the deconvolution error, consider the following upper bound

���i(ejω)
�� ≤ �∆H

�
ejω

�
�F

�
M�

m=1

���Ĝim(ejω)
���
2
� 1

2

EX(ejω) ,

(9)
where � · �F denotes the Frobenius norm, ∆H(ejω) =
H(ejω) − Ĥ(ejω) is the matrix of room transfer function

errors, and EX(ejω) =
��

L

l=1

��Xl(ejω)
��2
� 1

2
. Note that this

upper bound is obtained by successive application of Cauchy-
Schwarz inequality, and it is therefore a tight bound, i.e. it is
theoretically achievable. The root mean square (RMS) error
across all input channels then has the following tight upper
bound:
���� 1

L

L�

i=1

|�i(ejω)|2

≤
�

1

L
�∆H

�
ejω

�
�F

�
L�

i=1

M�

m=1

���Ĝim(ejω)
���
2
� 1

2

EX(ejω)

=

�
1

L
�∆H

�
ejω

�
�F�Ĝ

�
ejω

�
�FEX(ejω) .

Observe that Ĝ(ejω) ˜̂G(ejω) =
�
˜̂
H(ejω)Ĥ(ejω)

�−1

, hence

�Ĝ
�
ejω

�
�F =

��
L

l=1 1/ (σi(ejω))
2, where σi(ejω) are

singular values of Ĥ(ejω). This identity finally gives the
following upper bound for the root mean square deconvolution
error:

���� 1

L

L�

i=1

|�i(ejω)|2

≤
�

1

L
�∆H

�
ejω

�
�F

����
L�

i=1

1

σ2
i
(ejω)

EX(ejω)

≤
�∆H

�
ejω

�
�F

σmin(ejω)
EX(ejω) , (10)

where σmin(ejω) = mini σi(ejω). A quantitative assessment
of the inversion accuracy under RIR acquisition errors inde-
pendent of input signals can be obtained by considering the
above error bound when all input signals are equal to the unit
Dirac pulse, i.e. Xi(z) = 1, i = 1, . . . , L. In that case for
all Xi(z) and all frequencies Xi(ejω) = 1, and therefore

EX(ejω) =
√
L. Hence the inversion error in (10) develops

as ���� 1

L

L�

i=1

|�i(ejω)|2 ≤
�∆H

�
ejω

�
�F

σmin(ejω)

√
L . (11)

Recall that error bounds in (10) and (11) are tight and
they demonstrates that the extent to which measurement errors
affect the deconvolution accuracy depends strongly on how
well conditioned the transfer function matrix H(ejω) is. If
H(ejω) is ill-conditioned at some frequency, then even if it
is possible to find numerically stable inverse filters, this will
cause the upper bound of the RMS error due to measurement
errors to be very high. Such a case may occur if the sources
or the microphones are positioned very close to each other.
Similarly, sources or microphones positioned on or near strong
acoustical nodes or anti-nodes will cause this upper bound to
be higher at corresponding frequencies. When the approximate
pseudoinverse as considered in the previous subsection is
used, then such a Ĝ(z) is the pseudoinverse of a system
Ĥ(z) which has an FIR, and therefore stable, pseudoinverse.
The approximation procedure, therefore, implicitly performs
regularisation of H(z) which prevents σmin(ejω) from being
very low. The approximation, on the other hand increases the
RIR error ∆H

�
ejω

�
due to the time aliasing described by (7),

and that has the opposite effect on the overall dereverberation
accuracy. Regularization can be also introduced explicitly as
Ĝ(z) = ( ˜̂H(z)Ĥ(z)+βI)−1

Ĥ(z) , for some β > 0, and then
σmin(ejω) is lower-bounded by

√
β. High level of regulariza-

tion on the other hand again increases the �∆H
�
ejω

�
�F factor

in the above bounds. Finding optimal β, or an optimal level
or regularization in general, is an interesting problem beyond
the scope of the present paper. The problem has been recently
investigated experimentally by Hikichi et al. [13] for the case
of one source and perturbations due to source displacement.

C. Room impulse response errors
It is now of interest to investigate the distortion of room

transfer functions,

∆Hml(e
jω) = Hml(e

jω)− Ĥml(e
jω) ,

caused by errors in the acquisition of the corresponding
impulse responses. A room impulse response h(n) is approx-
imately a series of impulses,

h(n) =
∞�

k=0

akδ(n− tk) , (12)

arriving at time instants tk with amplitudes ak. We focus on
errors which manifest as modulations τk of arrival instants tk,
perturbations αk in the observed amplitudes ak, and additive
noise η(n). Due to these effects, the acquired impulse response
becomes

ĥ(n) =
�

k

(ak + αk)δ(n− tk − τk) + η(n) . (13)

Note that the discrete-time notation of (12) and (13) implicitly
restricts tk and τk to integer values. Nevertheless, the Fourier-
domain analysis presented in this subsection holds also for
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non-integer delay and delay modulation parameters, and in the
simulations reported in the paper δ(n− tk − τk) are replaced
by impulse responses of corresponding fractional delay filters.
Amplitude perturbation factors αk and noise η(n) can be
jointly considered just as additive noise, i.e. one can write

ĥ(n) =
�

k

akδ(n− tk − τk) + ξ(n) ,

where ξ(n) = η(n) +
�

k
αkδ(n− tk − τk).

Towards establishing perturbation bounds, let us first focus
on the delay modulation only, that is, consider

ĥ(n) =
�

k

akδ(n− tk − τk).

The corresponding perturbation of the frequency response

∆H(ejω) = H(ejω)−Ĥ(ejω) =
∞�

k=0

ake
−jωtk

�
1− e−jωτk

�
,

can be upper bounded as

��∆H(ejω)
�� ≤ 2

∞�

k=0

���ak sin
�ωτk

2

���� . (14)

This upper bound is tight, and therefore theoretically achiev-
able. For low to moderate frequencies, i.e. such that ωτmax <
π, where τmax = max{|τk|}, a simpler, albeit looser bound
can be established as

��∆H(ejω)
�� ≤ 2

���sin
�ωτmax

2

����
∞�

k=0

|ak| , (15)

and further as
��∆H(ejω)

�� ≤ ωτmax

∞�

k=0

|ak| . (16)

The bound in (16) exhibits an increase with frequency at the
rate of 3 dB per octave, which is also observed in simulations
shown in Fig. 1. The last two upper bounds are valid in
the whole frequency range for τmax ≤ 1, which is at 44.1
kHz sampling equivalent to 22.7 µs. Another simpler bound,
that holds for all frequencies and does not depend on τmax,
develops as

��∆H(ejω)
�� ≤ 2

∞�

k=0

|ak| . (17)

It should be noted that the upper bounds in (16) and (17) are
very conservative, and while the bound in (14) is theoretically
achievable, the error can be expected to fall significantly
below all these bounds. Fig. 1 shows two examples of error
magnitude response in comparison with the upper bound
established by (15) for τmax = 0.1323 and τmax = 1.323,
which at 44.1 kHz sampling corresponds to 3 µs and 30 µs,
respectively. It can be observed that the actual error is very
close to the upper bound in (15) at low frequencies, that it is
significantly below the bound for higher frequencies, and that
its dependence on frequency and τmax obeys the same laws
as the upper bound in (16). These examples were obtained
by introducing delay modulation to simulated room impulse
responses using variable fractional delay filters as described
in the next section.
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Fig. 1. Error magnitude due to delay modulation. Solid curves are obtained
by simulating some typical scenarios with 3 µs and 30 µs delay modulation.
Theoretical upper bounds are shown as dashed lines.

The presence of additive error ξ(n) introduces also an
additive term in error bounds in (14-17), so the bound in (14),
for example, becomes

��∆H(ejω)
�� ≤ 2

∞�

k=0

���ak sin
�ωτk

2

����+
��Ξ(ejω)

�� ,

where Ξ(ejω) is the Fourier transform of ξ(n). The level of
the additive perturbation will be quantified in this paper as a
signal-to-noise ratio (SNR) with the following meaning:

SNR = 10 log10

��
n
h(n)2�

n
ξ(n)2

�
. (18)

This definition is used in the next section where experimental
results are reported.

In conclusion of this section, Fig. 2 shows the magnitude
of the error spectrum between the RIR of the example shown
in Fig. 1 with τmax = 1.323, and SNRs of 10 dB and
30 dB, which represent severe levels of additive error. It can
be observed that the perturbation due to additive error is more
pronounced at low frequencies than at high frequencies where
the overall perturbation is dominated by the effects of delay
modulation.

IV. EXPERIMENTAL ASSESSMENT

In this section we present a numerical assessment of the
impact of the FIR approximation of the pseudo-inverse and
RIR acquisition errors on dereverberation accuracy. For that
purpose we measured room impulse responses for L = 4
sources and M = 5 microphones positioned at random in
a rectangular acoustic isolation booth of dimensions 6.52 m×
4.56 m × 2.1 m with a reverberation time of RT60 ≈ 200
ms. Five AKG C417 miniature microphones were used to
measure the room impulse responses due to four MACKIE
HR824 loudspeakers using the maximum-length sequences
(MLS) method [28]. The sampling frequency used in the
measurements was Fs = 44.1 kHz, and measured RIRs
were truncated to a length of Lh = 15358 samples. The
positions of sources and microphones are shown in Fig. 3. We
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Fig. 2. Error magnitude due to the combined effect of the delay modulation,
amplitude errors, and background noise.

preferred a random placement of microphones and sources
so as to avoid a situation in which the transfer matrix of
the system would be particularly well conditioned by design,
hence in applications with properly designed microphone
arrays the inversion might perform better than suggested by
results reported in this section. Random positioning is also
beneficial as it prevents geometrical symmetries (e.g. a linear
microphone array positioned at the centre of the room) which
could decrease system order.

The delay modulation was simulated by filtering the RIRs
with a 10th order tunable allpass fractional delay filter [29].
The effective delay modulation of the RIR sample at a time
instant n achieved in this manner is τ(n) = ρ(n)τmax where
ρ(n) is a modulating function. To avoid non-stationary tran-
sient errors due to coefficient update in the employed fractional
delay filter, the modulating function ρ(n) was selected as a
smooth function, in particular

ρ(n) = sin

�
2πTs

Tmod

n+ φ

�
,

where φ is the random phase offset, Ts is the sampling interval,
and Tmod is the period which was set to 0.02 s.

In numerical assessments of the method, the following three
error metrics are used:
i) Dereverberation error energy [16]. It measures the deviation
of the equalized impulse response from the ideal, Dirac
impulse, in the time domain:

Ji = 10 log10

�
1

Lq

�

n

(δ(n)− qii(n))
2

�
, (19)

where qii(n) is the impulse responses corresponding to Qii(z),
the i-th diagonal element of the inverted transfer function
Q(z) = G(z)H(z), and Lq is its length.
ii) Deverberation spectral deviation [1]. It is a measure of the
flatness of the equalized response calculated as:

Vi =



 1

Lq

Lq−1�

k=0

�
10 log10

��Qii(e
jωk)

��− Q̄i

�2




1
2

, (20)
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Fig. 3. Top view of the acoustic isolation booth and the coordinates of
the sources and microphones used in the measurements. The circles represent
sources and the squares represent microphones.

where Q̄i = 1
Lq

�Lq−1
k=0 10 log10

��Qii(ejωk)
�� and ωk =

2πk/Lq . If the equalized response is the ideal unit impulse,
its spectrum is flat and then Vi = 0. This metric provides
information about the effectiveness of the method in reducing
the spectral coloration due to room acoustics.
iii) Signal-to-interference ratio (SIR) [30]. It is generally used
in assessing the performance of source separation algorithms
in terms of the level of leakage from unwanted sources. While
the proposed algorithm is not directly aimed at separation of
mixtures, separation is inherent in the algorithm. There are
many different definitions for SIR in the source separation
literature (see [31] for a review) and we have adopted the
following:

SIRi = 10 log10

�

n

|qii(n)|2

L�

j=1
j �=i

�

n

|qij(n)|2
(21)

where qij(n) is the impulse responses corresponding to Qij(z)
entry of Q(z) = G(z)H(z).

A. Effects of the DFT size and length of inverse filters
Let us consider the effects of the size of the DFT used in

the approximate inversion and the effects of the truncation
of inverse filters on the dereverberation accuracy. For an
illustration, the inverse filter matrix was first computed for
the system of L = 4 sources and M = 5 microphones. For
Lh = 15358, the DFT size suggested in Section III-A is
2L(Lh − 1) + 1 = 122857. The DFT size N = 217 is the
smallest radix-2 larger than this value.

The top panel of Fig. 4(a) shows the first 8000 samples (us-
ing Fs = 44.1 kHz) of the normalized RIR, h3,1(n), obtained
in the measurements. A typical inverse filter, g2,1(n), is shown
in the bottom panel. It may be observed that the filter has
many coefficients which are negligibly small. This suggests
that it might be possible to symmetrically truncate filters in



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, MONTH 2011 9

0 1000 2000 3000 4000 5000 6000 7000 8000
−1

−0.5

0

0.5

1

Samples

A
m

pl
itu

de

2 4 6 8 10 12
x 104

−4

−2

0

2

x 10−4

Samples

A
m

pl
itu

de

20% 40%
60%

80% 80%
60%

40%
20%

(a)

0 2 4 6 8 10 12 14
x 104

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Samples

Lo
g 

m
ag

ni
tu

de
 (d

B
)

(b)

Fig. 4. A typical room impulse response, inverse filter and equalized
response. (a) Top panel: normalized RIR, h3,1(n), for the first source and
the third microphone. Bottom panel: the inverse filter, g2,1(n), with different
levels of symmetric truncation denoted by dashed lines, and (b) Log magnitude
of the equalized response, 10 log10 |q3,3(n)|, for the third channel.

order to reduce the computational requirements. Truncation
levels of 20%, 40%, 60%, and 80% are also shown on the
plot. The magnitude of the impulse response of the equalized
transfer function for the third source, 10 log10 |q3,3(n)|, is
shown in 4(b). The most pronounced departures from the
Dirac appear at the beginning and at the end of the equalized
response and are caused by the aliasing due to finite DFT
size. It may be observed that the equalized response is a
delayed Dirac. This system delay is determined by the length
of the inverse filters, which depends on the DFT size and
the extent of the filter truncation. The initial delay for an
equalized impulse response obtained with a DFT size of N ,
and a truncation level of P% is �N(1− P

100 )/2�.
1) Effects of the DFT size: The DFT size is an impor-

tant design parameter, having an impact on the time-domain
aliasing and the accuracy of the method on one side, and the
length of inverse filters, and consequently the complexity of
their computation and implementation, on the other. Effects
of the DFT size on the accuracy of the dereverberation are
assessed experimentally in this section.

Fig. 5 shows the dereverberation error energy, derever-

beration spectral deviation, and SIR for DFT sizes between
N = 214 and N = 217, for different number of sources,
L, with a fixed number of microphones, M = 5. Here,
the error metrics were calculated by obtaining the inverse
system response for all LCk, k = 1 · · ·L combinations of
L = 4 sources. The error bars in this and other figures in the
paper denote maximum and minimum values of the respective
metric. Results corresponding to a given fixed L are not placed
on the same vertical line, but are displaced horizontally for
visualization clarity.

It can be observed that, as expected, larger DFT sizes cause
error energy and spectral deviation metrics to be smaller and
SIR to be higher. Note that for L = 1 and L = 4 sources the
corresponding DFT sizes (closest radix-2 numbers) according
to the rule proposed in Section III-A are N = 215 and N =
217, respectively. Values of the three error metrics reported
in the figure indicate that the proposed rule for deciding on
the DFT size ensures very high accuracy, but that smaller sizes
could also suffice, as well as that by increasing the size beyond
that value improves the accuracy further.

An important side effect of reducing DFT size is possible
occurrence of pre-echoes and spurious echoes in the equalized
response due to aliasing. Two equalized responses for L = 4
and M = 5 obtained with DFT sizes N = 212 and 217 are
shown in Fig. 6. The pre-echo and the spurious echo in the
equalized response for N = 212 are marked in the plot with
an arrow and a circle, respectively. The higher level of the
error in the equalized response for shorter DFT size is also
evident in the figure. Note that the scales of the two plots are
different.

While the experimental results presented in this section can
only represent the performance of the method for a specific
measurement condition, the results indicate that computational
savings may be possible by reducing the DFT size. It should
be noted that the DFT size should not be decreased below a
certain value so as not to cause audible echoes or pre-ringing
in the equalized responses. In the example that we provided,
the DFT size can be reduced to N = 214 without decreasing
the overall performance of the system significantly.

2) Effects of filter length: The bottom panel of Fig. 4(a)
shows that the energy of the inverse filters is concentrated near
the middle and that their impulse responses exhibit rapid decay
away from the centre. This suggests that it might be possible
to truncate these filters in order to reduce computational
requirements of the dereverberation. The truncation would
however degrade dereverberation accuracy. Here, we assess
this accuracy impairment numerically for different levels of
filter truncation.

The DFT size used in the inversion is N = 217, and there-
fore, the length of the inverse filters is Lg = N = 217. Fig. 7
shows the error metrics for different truncation levels between
20% and 80%. The error metrics for equalized responses using
filters of the original length Lg = N are also given for
comparison. It may be observed that although the error metrics
show progressive degradation of the deconvolution accuracy
as the filter-length shortens, good results are obtained even
when the inverse filters are truncated to 20% of their original
length. It should be noted that although we only consider
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Fig. 5. Effects of the DFT size, N , on deconvolution accuracy for M = 5
microphones and L = 1, . . . , 4 sources. The curves represent mean values,
averaged over considered channels, and the error bars represent maximum
and minimum values of the corresponding metric. (a) Dereverberation error
energy, J , and (b) Dereverberation spectral deviation, V , and (c) SIR.

simple truncation in this article these inverse filters can also
be shortened by smoothing [17], [18].

Fig. 8 shows the equalized responses for a single channel
obtained with truncated filters for M = 5 and L = 4.
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Fig. 6. Pre-echo and spurious echo due to short DFT size. The top plot
shows an equalized response obtained using inverse filters computed via the
N = 212-point DFT. Pre-echo is denoted by an arrow and the spurious echo
is circled. The bottom plot shows the equalized response for N = 217.

It may be observed that even at 80% truncation the error
level is still around −40 dB and no spurious echoes or pre-
echoes are observed. A comparison between these results
and those shown in Section IV-A1 suggests that truncation
of inverse filters is a better way of reducing computational
requirements than reducing the DFT size both in terms of
inversion accuracy and for avoiding spurious echoes and pre-
echoes. This observation could be expected considering that a
larger DFT size decreases time-domain aliasing, as it follows
from (7), so that the samples retained after the truncation are
closer to the original impulse responses than those obtained
by decreasing the DFT size to the desired filter length.

B. Robustness to RIR errors
Now we consider the impact of errors in the acquisition

of RIRs on the accuracy of the deconvolution, focusing on
additive errors and the delay modulation as discussed in
Section III-C. We consider the effect of not knowing the RIRs
with infinite accuracy, but with a certain additive error, and
then using these inaccurate impulse responses to compute the
pseudoinverse system according to (6). The inverse filters thus
suffer from two forms of error: one which is introduced by
applying additive error and delay modulation to RIRs and
the other by using the FIR approximations of the inverse
filters. The effects of the FIR approximation are discussed in
general terms in Section III-B, however the plots in Fig. 5
corresponding to N = 217, which is the DFT size and
filter length used in these experiments, show that this FIR
approximation practically has a negligible effect on the error
of the inversion of the simulated system.

Fig. 9(a) shows an example of log magnitude plots of
equalized responses for SNR levels of 10, 20, 30, and 40 dB
(as defined in (18)). At this point we consider only errors
due to ambient noise which we model as pink noise. It
can be observed that, not surprisingly, the error floor in the
equalized response increases proportionally with the level of
the additive error, however it is always low in comparison
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Fig. 7. Effects of inverse filter truncation on deconvolution accuracy in
the case of M = 5 microphones and L = 1, . . . , 4 sources. The curves
represent mean values, averaged over considered channels. The error bars
represent maximum and minimum values of the corresponding metric. (a)
Deconvolution error energy, J , (b) Spectral deviation, V , and (c) SIR.

with the SNR level. A subjective evaluation of the effects
of these perturbations is beyond the scope of this paper,
however in preliminary listening tests no preringing effects
were audible for the tested conditions. Fig. 9(b) shows the
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Fig. 8. Effects of inverse filter truncation on equalized responses in the time
domain. Log magnitude of equalized responses q3,3(n) for different levels of
filter truncation.

effect of increasing the maximum delay modulation. The
equalized responses shown in the figure were obtained for
maximum delay modulations of τmax = 3 µs, τmax = 10 µs
and τmax = 30 µs. It can be observed that even if the level
of delay modulation is increased by an order of magnitude,
the error floor of the equalized response does not increase
significantly.

Fig. 10 shows the dependence of the three metrics of the
inversion quality on RIR perturbation levels. As expected, the
deconvolution error energy metric, J , and spectral deviation
V systematically increase with the perturbation. Still, the error
energy J is less than about −50 dB even when the RIR error
reaches 10 dB SNR. Spectral deviation decreases significantly
when SNR increases from 10 to 40 dB, attaining 0.1 dB level
at 40 dB SNR. At 30 dB SNR, the SIR ranges from around
8 dB for 4 sources to close to 20 dB for 2 sources, which
presents a good level of separation.

Finally, Fig. 11 shows the same error metrics for different
delay modulations. It can be observed that the increase in the
delay modulation affects the error energy more severely than
spectral deviation. Increasing the level of delay modulation
degrades the SIR, but still a reasonable separation is achieved
if the number of sources is not too close to the number of
microphones.

Note again that as it was shown in Section III-B, the
robustness of system inversion to the accuracy of RIR acqui-
sition depends critically on how well conditioned the transfer
function, H(z), of the system is. The example presented in
this section is intended merely for providing some quantitative
intuition about error levels in an environment where no special
arrangement of microphones and sources is used to ensure
that the transfer function of the system is particularly well
conditioned.

In order to control perturbation levels, in the examples
provided up to this point additive noise and delay modulation
were added to the measured RIRs synthetically. Next, we
measured a second set of impulse responses after a time
interval of 30 minutes after acquiring the first set of impulse
responses. While the RIRs obtained were similar as expected,
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Fig. 9. Effects of delay modulation and additive RIR errors on the
responses of inverted systems. The equalized responses of the first channel,
10 log10 |q11(n)|, for M = 5, and L = 4. (a) Different SNR levels, and (b)
delay modulations of τmax = 3 µs, τmax = 10 µs, and τmax = 30 µs.

there were small but significant differences between the two
sets of RIRs. These differences occur due to many factors,
including local temperature fluctuations, background noise,
small displacements of the microphones, finite precision of the
measurement, etc. The average error between two sets of RIRs
normalized with respect to the first set of RIRs was −21.70 dB
with a maximum error of −15.63 dB and a minimum error of
−33.42 dB.

The inverse system designed using the first set of RIRs
with N = 217 was then used to invert the system with the
new set of RIRs. The same metrics as obtained for the earlier
examples were also obtained for all source combinations from
L = 1 to L = 4 and M = 5 microphones. The results
are summarized in Fig. 12. It can be observed that error
energy and spectral deviation are very low. The lowest SIR
is observed for L = 4 case, and still presents an acceptable
level of separation. Furthermore, these results, obtained with
real measurement discrepancies, are better than expected based
on simulations which involved artificially added perturbations.
This can be observed by comparing results in Fig. 12 with the
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Fig. 10. Effects of additive noise on deconvolution accuracy parameterized by
the SNR level. The plots represent averages over individual channels parame-
terized by SNR due to additive pink noise. The error bars represent maximum
and minimum values of the corresponding metric. (a) Deconvolution error
energy, J , (b) Spectral deviation, V , and (c) SIR.

results in Fig. 10 corresponding to 20 dB SNR. Note that
neither the experiment with measured impulse responses, nor
the simulations with pink noise model properly the additive
error caused by RIR truncation, which is known to have
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Fig. 11. Effects of delay modulation on dereverberation accuracy. The
plots represent averages over individual channels parameterized by delay
modulation. The error bars represent maximum and minimum values of
the corresponding metric. (a) Deconvolution error energy, J , (b) Spectral
deviation, V , and (c) SIR.

a more complex spectral shape than white or pink noise.
An informal subjective listening test also confirmed that the
investigated algorithm provides a good level of dereverberation
and separation without significant preringing artifacts.
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Fig. 12. Error metrics for a realistic measurement error scenario. The plots
represent averages over individual channels. The error bars represent max-
imum and minimum values of the corresponding metric. (a) Deconvolution
error energy, J , (b) Spectral deviation, V , and (c) SIR.

V. CONCLUSION

This paper presents a study of several aspects of non-
blind multichannel dereverberation. Conditions for perfect
dereverberation using stable or FIR filters are established.
When perfect deconvolution is possible, the inverse system
is not unique. The solution which is optimal in terms of
robustness to additive noise is provided by the pseudoinverse
of the system transfer function. A necessary and sufficient
condition for the pseudoinverse to be FIR is established. The
sensitivity of multichannel dereverberation to perturbations of
acquired room impulse responses is also investigated theoret-
ically and numerically. Simulation results suggest that mul-
tichannel dereverberation of a well conditioned system using
its pseudoinverse, or an FIR approximation thereof, is robust
to perturbations which are expressed as delay modulation and
additive error.
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