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Simulation of Directional Microphones in Digital
Waveguide Mesh-based Models of Room Acoustics
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Abstract—Digital waveguide mesh (DWM) models are time-
domain numerical methods providing computationally simple
solutions for wave propagation problems. They have been used
in various acoustical modeling and audio synthesis applications
including synthesis of musical instrument sounds and speech,
and modeling of room acoustics. A successful model of room
acoustics should be able to account for source and receiver
directivity. Methods for the simulation of directional sources in
DWM models were previously proposed. This article presents a
method for the simulation of directional microphones in DWM-
based models of room acoustics. The method is based on the
directional weighting of the microphone response according to
the instantaneous direction of incidence at a given point. The
direction of incidence is obtained from instantaneous intensity
that is calculated from local pressure values in the DWM model.
The calculation of instantaneous intensity in DWM meshes and
the directional accuracy of different mesh topologies is discussed.
An intensity-based formulation for the response of a directional
microphone is given. Simulation results for an actual microphone
with frequency-dependent, non-ideal directivity function are
presented.

Index Terms—Microphones, room acoustics, finite difference
methods, digital waveguide mesh, acoustic intensity.

I. INTRODUCTION

D IGITAL waveguide mesh (DWM) models are numerical
solvers of the wave equation providing second-order

accurate solutions in two or higher dimensional problems [1].
Simulation of room acoustics using wave-theoretical models
such as the DWM is particularly useful, as these models
readily simulate wave-related phenomena such as obstruc-
tion and diffraction [2]. Simulation of these phenomena us-
ing geometry-based models of room acoustics requires extra
computational effort [3], [4]. In many room modeling and
simulation applications involving DWMs, both the source
and receiver models are omnidirectional [5]–[7]. However,
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real acoustical sources and receivers are never perfectly om-
nidirectional. In order to obtain more realistic simulations,
microphone and source directivities have to be modeled.

Recently, a method for simulating broadband, frequency-
dependent directional sources was proposed for DWM-based
models of room acoustics [8], [9]. The method is based on
the weighting of the simulated wave front using frequency-
dependent source directivity data. It is possible to accurately
simulate sources with analytic (such as a dipole source) and
empirical (such as human mouth or loudspeaker) directivity
functions using that method. Subsequently, another method
based on multipole synthesis for simulating directional sources
in DWM models was proposed [10].

Simulation of directional microphones on DWM models
was addressed indirectly in [11], [12]. However, those works
investigated the simulation of differential microphone arrays
with the aim of obtaining signals that can be used for encoding
the acoustics of the room using second-order Ambisonics, and
not modeling and simulating actual directional microphones
per se.

A method for simulating directional microphones in DWM
models is presented in this article. The proposed method is
based on the numerical calculation of instantaneous intensity
at the microphone position to determine the instantaneous
local direction of the simulated sound field. The instantaneous
response of the directional microphone is obtained based on
the instantaneous intensity and the direction estimate.

Section II provides an overview of DWM models. A method
for the calculation of instantaneous acoustic intensity in DWM
models is given in Section III. Section IV explains the method
for simulating directional microphones in DWM models to-
gether with a discussion of microphone directivity and its
relation to acoustic intensity. Section V presents the simulation
of a real directional microphone using tabulated directivity
data as an example. Section VI concludes the paper.

II. DIGITAL WAVEGUIDE MESH MODELS

Wave propagation problems for acoustical resonators with
simple geometries can usually be solved theoretically. How-
ever, a closed-form theoretical solution is generally not pos-
sible for acoustical modeling problems with complex geome-
tries. Numerical methods that solve the wave equation locally
can be used in such propagation problems. Finite element
method (FEM) [13], boundary element method (BEM) [14],
and finite-difference methods [15]–[17] are widely used for
this purpose.
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Fig. 1. Two DWM scattering junctions positioned at x0 and xi connected
by a bidirectional delay of T . The incoming and outgoing wave variables,
p−i (x0, n) and p−i (x0, n) are shown.

Digital waveguide (DWG) modeling is a time-domain nu-
merical method based on the concept of wave scattering. DWG
models were originally devised for solving one-dimensional
wave propagation problems such as on vibrating strings [18],
[19]. They have been used in music [20], [21] and speech
synthesis applications [22], [23]. DWG models consist of two-
port junctions interconnected via bidirectional delay elements.
The computational scheme has two consecutive steps that are
carried out iteratively. In the first step, the incoming wave
variables at the junction are scattered to obtain the outgoing
wave variables. In the second step the calculated outgoing
wave variables are propagated to the neighboring junctions.
This provides a traveling wave, or d’Alembert solution of the
wave equation.

DWG modeling can be generalized to two and three dimen-
sions for simulating wave propagation in acoustical resonators
such as drum membranes [24], [25] and rooms [5]–[9], [26].
Digital waveguide mesh (DWM) is the name given to these
multidimensional models due to the scheme being operated on
a multidimensional mesh.

Like DWG models, DWM models consist of multiport junc-
tions interconnected via bidirectional delay elements. At any
given instant, a given multiport junction with M neighbors,
positioned at x0 will have incoming wave variables, p+

i (x0, n),
and outgoing wave variables, p−i (x0, n), at its port with the
index i, connected to the neighboring junction positioned at xi
(see Fig. 1). These wave variables and the junction pressure,
p(x0, n) are related as follows [1]:

p(x0, n) =
2
Yt

M∑
i=1

Yip
+
i (x0, n), (1)

p−i (x0, n) = p(x0, n)− p+
i (x0, n), (2)

where Yi is the admittance of the ith port and Yt =
∑M
i=1 Yi

is the total admittance. This operation is called the scattering
pass.

The calculated outgoing wave variable at junction N is
propagated to junction K using the following relation:

p+
N (xK , n) = p−K(xN , n− 1). (3)

In other words, the outgoing wave variable of junction N at
its port connected to the junction K is the incoming wave
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Fig. 2. Uniform 3D mesh topologies: (a) cubic (M = 6), (b) tetrahedral
(M = 4), (c) body-centered cubic (BCC) (M = 8), and (d) cubic close-
packed (CCP) (M = 12). The positions of the central junction, x0, and
neighboring junctions, xi are shown.

variable at the next time step for the latter. This operation is
called the propagation step.

The scattering pass can be written as a matrix operation [1]
such that,

p−(x0, n) = S p+(x0, n) (4)

where S = [2Yi/Yt]M×M − I is called the scattering matrix,
and p+(x0, n) and p−(x0, n) are the incoming and outgoing
wave variable vectors. If the junction is situated in a homoge-
nous medium the scattering matrix can be expressed as:

S =
2
M

JM − I (5)

where JM is the M ×M matrix of ones and I is the M ×M
identity matrix. In this case the scattering matrix is a unitary
matrix, i.e. STS = I and the junction is lossless.

The DWM formulation is based on the assumption that
the space is uniformly sampled and the distances between
neighboring junctions are equal throughout the mesh. For 3D
DWM models the spatial sampling period, r is related to the
temporal sampling frequency, fs by:

r = c
√

3/fs, (6)

where c is the nominal wave propagation speed on the mesh.
For room acoustics modeling, r should be selected in such a
way that the wave speed on the mesh is equal to the speed of
sound in the air, csound ≈ 344 m/s. For a sampling frequency
of fs = 44.1 kHz, the spatial sampling period is r ≈ 1.35
cm. The bandwidth of a DWM model has a theoretical upper
bound of 0.25 fs [27] but the actual bandwidth is generally
lower [28].

There is a limited number of uniform sampling schemes
(i.e. mesh topologies) in three dimensions. These are cubic,
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tetrahedral, body-centered cubic (BCC), and cubic close-
packed (CCP) topologies [29]. Fig. 2 shows these topologies.
As may be observed, a junction in cubic, tetrahedral, BCC,
and CCP topologies, has 6, 4, 8, and 12 neighbors, respec-
tively. These different topologies have different advantages in
terms of directional dispersion [27], [29], [30], computational
complexity [31], accuracy of numerical derivatives [32], and
computational efficiency [29].

III. CALCULATION OF INSTANTANEOUS INTENSITY IN
DWM MODELS

A. Calculation of instantaneous intensity

Acoustic intensity is a measure of the energy flow in an
acoustical field. The instantaneous direction of the energy flow
at a given point is coincident with the instantaneous intensity
vector at that point. Let us consider the sound field at a given
point, x, in 3D space. The instantaneous intensity vector is
defined as the product of pressure and velocity components:

I(x, t) = p(x, t)v(x, t). (7)

The velocity component can be obtained using the following
approximation:

v(x, t+ T ) ≈ v(x, t) + T
∂

∂t
v(x, t), (8)

where the time derivative of velocity is proportional to the
pressure gradient [33] such that

∂

∂t
v(x, t) = − 1

ρ0
∇p(x, t). (9)

If we further assume that the acoustic medium is homogenous
and quiescent such that v(x, 0) = 0, the pressure gradient,

∇p(xJ , t) =
[
∂p

∂x

∂p

∂y

∂p

∂z

]
x=xJ

, (10)

can be used to calculate the velocity at a given position xJ at
any time instant.

A DWM model provides a discrete time and space solution
and it is not possible to obtain the analytic gradient of
the underlying continuous time pressure function. However,
numerical gradients, which provide discrete-space approxima-
tions of the analytic gradients, can be obtained in different
DWM topologies [32].

Let us have a central junction positioned at x0 ∈ R3 with M
neighboring junctions positioned at {xi ∈ R3 : i = 1 · · ·M}
on a 3D mesh grid. Let us also define the 3D position vectors,
ri such that:

ri = xi − x0 = r ûi, (11)

where ûi = [ui,x ui,y ui,z] for i = 1 · · ·M is the unit vector in
the direction of the neighboring junction and r is the common
interjunction distance (i.e. spatial sampling period). The unit
vector ûi in spherical coordinates can be represented in the
Cartesian coordinates as:

ui,x = cosφi cos θi,
ui,y = cosφi sin θi, (12)
ui,z = sinφi,

x0

xi

z

y

x

ûx

ûy

ûz

θi
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r̄i

Fig. 3. Geometry of the problem. x0, xi: Positions of the central and
neighboring junctions, ri: position vector, ûx, ûy , ûz : unit vectors in the
x, y, and z directions, and θi, φi: angular coordinates of the neighboring
junction.

where {θi} and {φi} represent the angular coordinates of the
spherical coordinate system. Fig. 3 shows the geometry of the
problem.

For a three dimensional, real, differentiable function, p(x),
sampled at the described points, a first-order approximation
of the directional derivatives can be obtained for the central
junction positioned at x0 such that:

Dûi
p(x0) = [p(xi)− p(x0)] /r, (13)

where Dûi
denotes the directional derivative of p(x) along the

direction of the vector from x0 to xi.
This provides an approximation of the pressure gradient,

∇p(x), projected in the direction of ûi such that:

∇p(x)|x=x0 · ûi ' Dûi
p(x0). (14)

The ensemble of these approximations can be expressed as a
set of linear equations by:

Dp(x0) ' U dp(x0), (15)

where

Dp(x0) = [Dû1p(x0) Dû2p(x0) · · ·DûM
p(x0) ]T, (16)

U =


u1,x u1,y u1,z

u2,x u2,y u2,z

...
...

...
uM,x uM,y uM,z

 , (17)

dp(x0) =
[

∂p
∂x

∂p
∂y

∂p
∂z

]T
. (18)

For uniform 3D mesh topologies the number of a junction’s
neighbors M > 3 and the system of linear equations will be
overdetermined. The optimal solution for dp(x0) in the least
squares sense can be obtained as:

dp(x0) = U+Dp(x0), (19)
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where the inverse projection matrix, U+, is the Moore-Penrose
pseudoinverse of the matrix U such that U+U = I. Each
DWM topology has a different inverse projection matrix. Once
the first-order approximation of the pressure gradient, dp(x),
is calculated, the velocity and the intensity can be obtained
from (8) and (7), respectively.

The horizontal and vertical angles, (θn, φn), of the sound
field at the given junction and discrete-time instant can be
calculated as:

φn = arcsin
(

I · ûz
‖I‖

)
, θn = arccos

(
I · ûx
‖I‖ cosφn

)
. (20)

It should be noted that the intensity calculation described
above can be adapted to any DWM topology or to any 3D spa-
tial sampling of an acoustical field. Thus the exposition given
above is not specific to a single topology or computational
scheme.

B. Accuracy of direction estimation

Different mesh topologies have different accuracies when
calculating the pressure gradient. The magnitude errors of
numerical gradients were discussed in [32]. It was shown that
the tetrahedral topology provided the lowest magnitude error
if the same spatial sampling period was used in all topologies.
Cubic topology was shown to provide the lowest magnitude
error if the mesh density (i.e. junctions per unit volume) was
the same for all topologies.

The directional accuracy of the numerical gradient is also
relevant in this paper. Similar to the magnitude errors encoun-
tered in the numerical calculation of pressure gradient, the
accuracy of direction estimation will be frequency-dependent.
Therefore, the analysis of different topologies for their ac-
curacy of direction estimation is carried out in the spatial
frequency-domain.

Let us express the pressure field, p(x), in the frequency
domain as P (ω̄), where ω̄ = [ωx ωy ωz] is the spatial
frequency vector. Each point in the spatial frequency domain
corresponds to a single spatial frequency vector and represents
a monochromatic plane wave with the angular frequency
ω0 = ‖ω̄‖/√3 propagating in the opposite direction of that
vector [34]. If we assume that the spatial sampling period (i.e.
interjunction spacing) is r, the numerical derivatives in the
directions of the neighboring junctions can be expressed in
spatial frequency-domain by the 3D spatial Fourier transform
as:

Dûi
p(x) F3D−−−→ Dûi

P (ω) =
1
r

(
e−jrω·ûi − 1

)
P (ω). (21)

Here, we used the shift theorem to express the pressure at the
neighboring junction as a function of pressure at the central
junction.

The numerical derivative vector in (16) can be expressed in
the frequency domain as

P∆ = [Dû1P (ω) Dû2P (ω) · · ·DûM
P (ω) ]T. (22)

Then, the numerical gradient expressed in the spatial frequency
domain can be obtained as

dP (ω) = U+P∆. (23)

The frequency domain expression for the actual gradient is:

∇p(x) F3D−−−→ jωP (ω). (24)

The accuracy of direction estimation can be quantified by
the angle between the actual and numerical gradients in the
spatial frequency domain. The angle between two real valued
vectors in RN can be obtained using the scalar product of
the vectors. However, frequency-domain vectors representing
gradients are in CN . The angle between two complex vectors,
a,b ∈ CN , is defined as the Hermitian angle ΘH{a,b} [35]:

ΘH{a,b} = arccos
∣∣∣∣ (a,b)C
|a| |b|

∣∣∣∣ , (25)

where (a,b)C =
∑N
k=1 a

∗
kbk is the Hermitian product, and

|a| =
√

(a,a)C. The Hermitian angle is limited to the first
quadrant such that 0 ≤ ΘH ≤ π/2. The directional estimation
error in spatial frequency domain, εθ(ω̄), can then be expressed
as

εθ(ω) = ΘH

{
jωP (ω),U+P∆

}
. (26)

Fig. 4 shows the directional estimation error for cubic, tetra-
hedral, body-centered cubic (BCC), and cubic close-packed
(CCP) topologies with unit spatial sampling period, r = 1, at
‖ω̄‖ = π/4. It may be observed that the directional estimation
error of the tetrahedral mesh topology is greater than those
of other topologies almost by an order of magnitude. The
directional estimation error of cubic and BCC topologies are
very similar. The CCP topology has the highest accuracy,
particularly for horizontal directions.

Table I shows the averages, maxima, and standard deviations
of directional estimation errors for different topologies. It may
be observed that the directional accuracy of cubic, CCP, BCC
topologies are comparable, but the tetrahedral topology has
a lower directional accuracy than the others. Average and
maximum angular errors for the cubic, CCP, BCC topologies
are less than 1◦, and 2.5◦, respectively. Maximum directional
estimation error on a tetrahedral mesh can be as high as 19◦.
This result shows that the tetrahedral mesh is not suitable
for directional estimation of simulated sound fields. Cubic
topology provides a good trade-off between accuracy and
computational requirements.

TABLE I
MEAN (εθ ), MAXIMUM (max {εθ}), AND STANDARD DEVIATION (σθ ) OF

DIRECTIONAL ESTIMATION ERROR IN DEGREES.

Cubic Tetra. BCC CCP
εθ 0.92◦ 8.10◦ 0.61◦ 0.57◦

max {εθ} 2.22◦ 19.01◦ 1.49◦ 2.45◦

σθ 0.51◦ 3.71◦ 0.34◦ 0.46◦

IV. SIMULATION OF MICROPHONE DIRECTIVITY IN DWM
MODELS

A. Microphone directivity in DWM models

Microphones have different sensitivities to sound waves
incident from different directions. The ratio which quantifies
this sensitivity difference is called the microphone’s direc-
tivity function and is denoted as Γ(θ, φ). More specifically,
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Fig. 4. The directional estimation error, εθ , with ‖ω‖ = π/4 for (a) cubic, (b) tetrahedral, (c) body-centered cubic (BCC), and (d) cubic close-packed (CCP)
topologies.

microphone directivity represents the ratio of a microphone’s
response for a plane wave incident from a given direction, to
its response for a plane wave incident from its look direction.
It can be expressed as the ratio of the rms energy of the
microphone’s output voltage for a plane wave incident from
an arbitrary direction, vm(θ, φ, t), to the rms energy of output
for a plane wave with the same total energy incident from the
front direction, vm(0, 0, t), such that:

Γ(θ, φ) =

√√√√∫ T+∆T

T
vm(θ, φ, t)2dt∫ T+∆T

T
vm(0, 0, t)2dt

. (27)

In a complex sound field such as a room, the sound field can
be expressed as a superposition of many plane waves incident
from different directions. Let us consider the case where there
are K plane waves, pk(t). Pressure, particle velocity, and
instantaneous intensity at the microphone position are:

p(x, t) =
K∑
k=1

pk(t), (28)

v(x, t) =
1
ρc

K∑
k=1

pk(t)n̂k, (29)

I(x, t) =
1
ρc

K∑
i=1

K∑
k=1

pi(t)pk(t)n̂k, (30)

where n̂k is the propagation direction of each plane wave.
The energy flow will have a direction coincident with the
instantaneous intensity showing the instantaneous direction of
the sound field at the given position, x. It may be observed
that the directions of the instantaneous intensity and particle
velocities of individual plane waves are related in a complex
way.

In a stationary sound field, the squared output signal of a
directional microphone with an acoustical axis in the (Θ,Φ)
direction, is proportional to the weighted intensity field inte-
grated over a unit sphere [36] such that

|vm(Θ,Φ)|2 ∝
∫ 2π

0

∫ π

0

I(θ, φ)|Γ(Θ− θ,Φ− φ)|2 sinφdφ dθ.

(31)
Here, I(θ, φ) is the directional distribution of intensity that
can be expressed in terms of the time-dependent directional
distribution of energy, E(θ, φ, t) as

I(θ, φ) =
∫ ∞

0

E(θ, φ, t)dt. (32)
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The relation between the total acoustic energy in the sphere,
E, and the time-dependent directional distribution of energy
is defined as

d3E = E(θ, φ, t) dt dΩ, (33)

where dΩ represents an infinitesimal solid angle. Then, the
instantaneous squared output signal of the microphone is
proportional to the weighted rate of change of energy in the
unit sphere:

|v(Θ,Φ, t)|2 ∝
∫ 2π

0

∫ π

0

E(θ, φ, t)|Γ(Θ−θ,Φ−φ)|2 sinφdφ dθ.

(34)
Due to the acoustic-energy corollary [37], the rate of change

of acoustic energy in a volume can be expressed using the
intensity distribution on a surface, S, enclosing that volume,
such that:

dE

dt
=
∫
S

[−I(t) · ûr] dS. (35)

where ûr is the outward unit vector normal to the surface.
The case where I · ûr < 0, corresponds to an energy entering
the volume and the case where I · ûr > 0 corresponds to
energy leaving the volume. The time dependent directional
distribution of energy can be expressed as the instantaneous
energy flow through the surface from the given direction such
that:

E(θ, φ, t) = −I(θ, φ, t) · ûr(θ, φ). (36)

It is then possible to express the relation between the output
of a directional microphone and the instantaneous intensity as:

|vm(Θ,Φ, t)|2 ∝
∫∫

S

[−I(θ, φ, t) · ûr(θ, φ)] |Γ(Θ−θ,Φ−φ)|2 sinφdφdθ.

(37)
In other words, the squared output of the microphone is
proportional to the weighted net energy flow.

Previous work on simulation of microphones on DWMs
investigated differential microphone arrays [11]. The simplest
example for differential microphone arrays is the first-order
microphone consisting of two spatially separated omnidirec-
tional microphone capsules [38]. In order for these micro-
phones to provide the intended directional response for a
wide frequency range, the separation between the microphones
should be small. Simulation of these first-order differential
arrays on DWM models is not always possible as the minimum
separation between individual microphones cannot be smaller
than the spatial sampling period, r, as given in (6). For
example, at the typical mesh update rate of fS = 44.1kHz,
two simulated capsules cannot be positioned any closer than
r ≈ 1.35cm to each other. In addition, the simulated micro-
phones can only be positioned at fixed orientations determined
by the mesh topology. Theoretically, it may be possible to
overcome this limitation by using an oversampled DWM
model. However, in practice, the computational requirements
of an oversampled 3D DWM model would increase cubically
with decreasing spatial sampling period, r. Therefore, we
assume that the microphones simulated in DWM models are
point-like. With this assumption, the instantaneous intensity
vector at the junction represents the instantaneous net energy
flow and the direction of the sound field. Therefore, the integral

∆...

p(x2, n)

p(x1, n)

p(xM , n)

p(x0, n)

Dp
U+

dp

−ρ−1
0

∂v
∂t v(x0, n)∫

I(x0, n)×

Fig. 5. The processing stages for calculating the instantaneous intensity,
I(x0, n) at a junction from the pressure values, p(xi) at the DWM junctions
using the inverse projection matrix, U+, inverse of the ambient density, ρ−1

0 ,
and a discrete time integrator.

over the surface enclosing the microphone is reduced to a
single term,

|vm(Θ,Φ, n)|2 ∝ |I(x, n)||Γ(Θ− θn,Φ− φn)|2, (38)

where (θn, φn) denotes the direction of the instantaneous
intensity vector, I(n).

As discussed in the previous section, it is possible to obtain
an approximation of the instantaneous acoustic intensity at a
DWM junction. The magnitude of the microphone’s output
signal can thus be calculated. However, the polarity of the
signal should be imposed on this magnitude to obtain useful
results. For practical purposes, we assume that the output of
the microphone and the pressure recorded at the microphone
position are in-phase. Therefore, the polarity of the output
voltage can be restored from the sign of the pressure as

vm(n) = sgn [p(n)] |vm(n)|, (39)

where sgn [•] is the sign function. It should be noted that
due to the point-like receiver assumption, the sound field is
assumed to have a single wave component whose direction
changes at each iteration. In other words, the method does
not distinguish between the individual wave components that
together make up the sound field. While this approach is
not suitable for pressure gradient directional microphones
composed of multiple elements, it is well-justified for single
diaphragm directional microphones.

Microphone directivity changes with frequency. It is gen-
erally tabulated in octave or 1/3-octave band resolution.
Therefore, the directional weighting operation discussed above
should be carried out at all frequency bands where direc-
tivity function is defined. Microphones also have direction-
independent frequency responses called the diffuse field re-
sponse. A filter modeling the diffuse field response should
be incorporated into the simulation in order to obtain a more
accurate result.

B. Implementation

The proposed method can be implemented as an efficient
algorithm. Fig. 5 shows how instantaneous intensity is cal-
culated from the pressure values at the given junction and
its neighbors. The pressure difference vector Dp(x0, n) is
obtained by subtracting the central junction pressure from the
pressure values of neighboring junctions and dividing these
terms by the spatial sampling period as described in (13). The
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approximation of the pressure gradient dp(x0, n) is obtained
by multiplying the difference vector by the inverse projection
matrix U+. The result is scaled by the negative inverse
of the ambient density, ρ0, and integrated using a discrete-
time integrator having a transfer function Hint(z) = Tz−1

1−z−1

where T = 1/fS is the temporal sampling period. The ob-
tained vector is an approximation of the instantaneous particle
velocity v(x0, n) at the central junction. The instantaneous
intensity I(x0, n) is obtained by multiplying the velocity and
the pressure.

The impulse response recorded by a simulated directional
microphone can be calculated using the instantaneous intensity
and pressure values at the junction for an impulsive excitation
as shown in Fig. 6. First, the magnitude and direction of the
instantaneous intensity vector are calculated. The magnitude
of the instantaneous intensity, |I(x0, n)| is weighted by the
squared value of directivity functions, |ΓC(θ, φ)|2 at each
frequency band according to the instantaneous direction of
incidence, (θn, φn). The square-root of the obtained value
is multiplied with the sign of pressure and filtered by the
corresponding octave-band filter, HC(z). The results from
each frequency band are added and the result is filtered by
the diffuse-field filter, Hd(z) to obtain the directional impulse
response. Zero-phase filtering may be used to prevent the
phase distortions associated with the octave-band and diffuse
field filters.

The microphone directivity patterns, ΓC(θ, φ) can be stored
as piecewise polynomials (i.e. shape preserving splines) or as
polynomials of harmonic functions. This way it is possible to
rotate the look direction of the virtual microphone easily. Thus,
a directional gain for each frequency band can be obtained
from these functions for any direction of incidence and for
any microphone rotation.

V. EXAMPLE: A CARDIOID MICROPHONE

A. Simulation of the microphone in a DWM-based room model

For the purpose of demonstrating the method, a studio
microphone, AKG C 214 is simulated. AKG C 214 is a single
capsule, large diaphragm cardioid microphone. A 3D DWM
model of a rectangular enclosure of size 4.1 m×5 m×2.1 m
with a cubic mesh topology was implemented. The update rate
of the mesh was fS = 44.1 kHz, and the theoretical upper
bound for the mesh bandwidth was 11025 Hz. The spatial
sampling period, which corresponds to the distance between
the junctions was r ≈ 1.35cm according to (6). The absorption
coefficients of the walls and the ceiling were selected as
α = 0.6461, and the floor as α = 0.4 so that the reverber-
ation time of the enclosure is T60 = 150 ms according to
Sabine’s equation [33]. The reflecting surfaces were modeled
as phase-inverting 1D boundaries (i.e. each boundary junction
had one neighbour). The horizontal plane directivity patterns
and diffuse field response of the microphone were obtained
from microphone specifications [39]. The data from available
directivity plots representing, |Γ(θ, φ)|2 were fitted with shape-
preserving piecewise cubic spline functions. Fig. 7 shows the
fitted directivity functions. The diffuse field response of the
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Fig. 8. Magnitude spectra of the diffuse field response of the AKG C
214 microphone (solid curve) and the 10th order minimum-phase IIR filter
modeling this response (dashed curve).

microphone was modeled using a 10th order, minimum-phase
IIR filter designed using the Yule-Walker method (see Fig. 8).

It was assumed that the directivity function has rotational
symmetry around its look direction. Therefore, instead of
obtaining azimuth and elevation angles separately, it is possible
to use the angle, ψn between the intensity vector, Î, and the
look direction vector, ûm, such that:

ψn = arccos

(
Î · ûm
‖I‖

)
, (40)

where ûm = [cos Θ cos Φ sin Θ cos Φ sin Φ]. This makes
it possible to use the horizontal directivity pattern of the
microphone for all elevation angles.

The DWM model was excited with a symmetric trivariate
Gaussian pulse, modeling an isotropic pressure distribution
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Fig. 6. The block diagram showing the processing stages to find the instantaneous direction of incidence at a junction.
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around the point of excitation. The pulse was positioned at
the center of the model (x = 2.05 m, y = 2.50 m, z = 1.05
m), and had a variance of 4 spatial samples. The model
was iterated 4410 times to obtain the first 100 ms of the
pressure values and the pressure gradients at the junction
positioned at, x = 2.05 m, y = 1.35 m and z = 1.05
m. The proposed method was applied as an offline post-
processing stage to obtain the impulse response registered by
the simulated microphone.

Fig. 9 shows the first 800 samples of the impulse response as
registered by the simulated cardioid microphone with different
rotations from θ = 0 (i.e. facing the sound source) to θ = π
(i.e. facing away). It may be observed that as the simulated
microphone faces away from the source, the amplitude of the
direct sound (between 120 and 180 samples) decreases. On
the other hand reflection from the back wall is captured at a
greater amplitude (between 700 and 760 samples) when the
cardioid is facing that wall.

Fig. 10 shows the portion of the impulse response containing
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Fig. 10. Direct sound as captured by the simulated AKG C 214 microphone
for 13 different orientations of the microphone between 0 and π with an
interval of π/12 radians.

the direct wavefront as captured by the simulated cardioid
microphone. The figure contains the impulse response be-
tween 120 and 180 samples for microphone rotations on the
horizontal plane with π/12 radians separation. The response
with the maximum amplitude belongs to the case where the
microphone is facing the source and the minimum amplitude to
the case where the simulated microphone facing away. It may
be observed that as the simulated microphone is rotated to face
away from the source, the amplitude of the microphone output
signal decreases. This situation is reversed for the reflection
from the back wall as may be observed in Fig. 11. Here,
the reflection from the back wall is captured with higher
amplitude by the microphone facing that wall. Also, note the
scale difference between the two plots.
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TABLE II
MAXIMUM AND MEAN ERRORS (IN DB) BETWEEN THE INTENDED DIRECTIVITY FUNCTION, |ΓC(θ, φ)|, AND SIMULATED RESULTS AT DIFFERENT

OCTAVE BANDS.

fC 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz
Max. error 3.16 0.29 1.75 1.66 0.23 0.70 3.48
Mean error 0.75 0.07 0.38 0.55 0.11 0.35 1.68

700 710 720 730 740 750 760
!12

!10

!8

!6

!4

!2

0

2

4

6
x 10

!8

Samples

A
m

p
li

tu
d

e

θ = 0

θ = π

Fig. 11. Reflection from the back wall as captured by the simulated AKG
C 214 microphone for 13 different orientations of the microphone between 0
and π with an interval of π/12 radians.

B. Directional accuracy of the method

For evaluating the directional accuracy of the proposed
method another set of simulations were carried out. The
microphone position was designated as the center of the
same DWM model used in Sec. V-A. Source positions were
designated with 10◦ azimuth separation at 1 m distance
from the microphone position . The mesh was sequentially
excited using Gaussian pulses with a variance of 4 samples
positioned at these source locations. The pressure and velocity
components were obtained for the first 200 iterations of each
run representing the direct portion of the sound field. The
corresponding directional responses of the microphone were
obtained using the proposed method. These responses were
filtered using octave-band filters. Energy for each direction
was calculated and normalized with respect to the energy at
the front direction in order to obtain the directive sensitivity
of the simulated microphone.

Fig. 12 shows the squared directivity function, |ΓC(θ, φ)|2
at different octave-bands, along with the normalized energy
of the simulated signal for the tested directions. It may be
observed that, except for the octave band with 8 kHz center
frequency, the simulation results follow the original directivity
pattern very closely. Table II shows the maximum and mean
absolute errors at different octave bands. The results suggest
that the proposed method is capable of accurately simulating
microphone directivity in 3D DWM models. The accuracy of
the method is worse for 8 kHz octave band due to direction
dependent dispersion that occur more prominently at that

frequency range. It should be noted that the errors given in the
table are half of the errors plotted in Fig. 12 as the tabulated
values are calculated as the difference between the rms energy
and the magnitude of the directivity function, |Γ(θ, φ)|.

VI. CONCLUSIONS

A method for simulating directional microphones in 3D dig-
ital waveguide mesh (DWM) based models of room acoustics
was presented in this paper. The proposed method is based on
the calculation of the intensity vector at a given junction in
a DWM by using the pressure and the velocity components
of the simulated sound field. A numerical method for the
calculation of instantaneous intensity on DWM models was
given. The accuracies of different mesh topologies for the
estimation of the direction of intensity vectors were analyzed.
It was found that the directional accuracies of cubic, body-
centered cubic (BCC), and cubic close-packed (CCP) topolo-
gies are comparable. The tetrahedral topology had the worse
accuracy. The relationship between instantaneous intensity
and microphone directivity was discussed. It was shown that
instantaneous intensity can be used in simulating directional
microphones if the microphone is assumed to be point-like.

A virtual directional microphone positioned in a DWM-
based acoustical model of a rectangular room was given as
a practical example. The 3D DWM model of a medium
sized room was excited with an omnidirectional pulse. The
proposed method was applied with the cardioid directivity
patterns of a real microphone. The results were presented
for various rotations of the microphone. Further simulations
were also presented to demonstrate the directional accuracy
of the method. Cubic mesh topology was used in the example
as it provides an excellent trade-off between accuracy and
computational complexity. However, it is possible to use other
mesh topologies easily with the proposed method.

Room acoustics simulation using geometrical models are
widely used in research and in practice. Although these models
are computationally less demanding than DWMs, they do not
provide physically accurate simulations of wave propagation
in rooms. The advances in computer hardware will make it
possible in the near future to simulate huge acoustic models
with wave-theoretical, numerical models such as DWMs.
The method proposed in this paper is a useful step towards
achieving a more complete room acoustic simulation with such
models. It would also be a useful tool for applications where
an accurate simulation of room acoustics is essential. Three
particular examples are simulation of microphone arrays,
simulation of spatial audio systems, and auralization of room
acoustics.
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Fig. 12. The directivity of the simulated microphone and the intended directivity pattern at octave bands with center frequencies (a) 125, 250, and 500 Hz,
(b) 1 kHz, (c) 2kHz and 4kHz, and (d) 8kHz. The solid curves denote the intended directivity. The markers denote the simulation results. Note the scale
difference for the 8kHz octave band.
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HACIHABIBOĞLU et al.: SIMULATION OF DIRECTIONAL MICROPHONES 11

[13] A. Craggs, “Acoutical modeling: Finite element method,” in Handbook
of Acoustics, M. J. Crocker, Ed. Wiley-Interscience, 1998, ch. 12, pp.
149–156.

[14] A. F. Seybert and T. W. Wu, “Acoustic modeling: Boundary element
methods,” in Handbook of Acoustics, M. J. Crocker, Ed. Wiley-
Interscience, 1998, ch. 13, pp. 157–167.

[15] D. Botteldooren, “Acoustical finite-difference time-domain simulation in
a quasi-Cartesian grid,” J. Acoust. Soc. Am., vol. 95, no. 5, pp. 2313–
2319, May 1994.

[16] ——, “Finite-difference time-domain simulation of low-frequency room
acoustic problems,” J. Acoust. Soc. Am., vol. 98, no. 6, pp. 3302–3308,
December 1995.

[17] J. C. Strikwerda, Finite Difference Schemes and Partial Differential
Equations, 2nd ed. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2004.

[18] K. Karplus and A. Strong, “Digital synthesis of plucked-string and drum
timbres,” Computer Music J., vol. 7, no. 2, pp. 43–55, Summer 1983.

[19] J. O. Smith, III, “Physical modeling using digital waveguides,” Computer
Music J., vol. 16, no. 4, pp. 74–91, Winter 1992.

[20] ——, “Principles of digital waveguide models of musical instruments,”
in Applications of digital signal processing to audio and acoustics,
M. Kahrs and K. Brandenburg, Eds. New York, USA: Kluwer Academic
Publishers, 2002, pp. 417–466.
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[34] L. Savioja and V. Välimäki, “Reducing the dispersion error in the digital
waveguide mesh using interpolation and frequency-warping techniques,”
IEEE Trans. on Speech and Audio Processing, vol. 8, no. 2, pp. 184–194,
March 2000.

[35] K. Scharnhorst, “Angles in complex vector spaces,” Acta Applicandae
Mathematicae, vol. 69, no. 1, pp. 95–103, October 2001.

[36] H. Kuttruff, Room Acoustics, 4th ed. London, UK: SPON Press, 2000.
[37] F. Jacobsen, “Sound intensity,” in Springer Handbook of Acoustics,

T. Rossing, Ed. New York, USA: Springer Science+Business Media
LLC, 2007, pp. 1053–1975.

[38] G. W. Elko, “Differential microphone arrays,” in Audio signal processing
for next-generation multimedia communication systems, Y. Huang and
J. Benesty, Eds. Boston, USA: Kluwer Academic Publishers, 2004, pp.
11–65.

[39] AKG Acoustics GmbH. AKG C 214 Microphone Specifications.
[Online]. Available: http://www.akg.com
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