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Time-domain Simulation of Directive Sources in 3D
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Abstract— Digital waveguide mesh (DWM) models offer a
simple, accurate, time-domain, numerical solution of the wave
equation. A specific case where such accurate and computation-
ally simple solutions are needed is the acoustical modeling of
open or closed volumes. It is possible to model 3D propagation of
waves in enclosures such as rooms using DWM models. Generally,
idealized omnidirectional sources are used for obtaining the
impulse response in the DWM. However, real-life sound sources
are never completely isotropic causing wavefronts with direc-
tional properties. This article presents two methods to simulate
analytical and empirical directivities in 3D DWM models in the
far-field. The first method is based on the direct excitation of
the mesh with the velocity component of the directional source
and is used to simulate analytical sources. The second method is
based on the weighting of velocity components generated by an
omnidirectional source at different octave-bands and is used to
simulate sources with frequency-dependent empirical directivity
functions. A simple interpolation method for obtaining a closed-
form description of the directivity function from incomplete
directivity data is also proposed. Simulation results are presented
for two sources in an acoustical model of a rectangular room.

Index Terms— Digital waveguide mesh, acoustic modeling,
sound source directivity, multidimensional wave propagation.

I. INTRODUCTION

THE prediction of sound fields inside open or closed
acoustical volumes such as city canyons or rooms has

been a traditional research topic with important applications
in audio and acoustical signal processing. The research in the
area has been driven by the need for the modeling and simu-
lation of room acoustics and the prediction of environmental
noise. Efforts have mainly been concentrated on methods
employing the principles of geometrical acoustics, mainly due
to their computational simplicity. Such methods include ray
tracing [1] and its derivatives [2], and image-source method
(ISM) [3] among others. While these methods have significant
practical value, they are hindered by several inherent problems
in accounting for certain properties of wave related phenomena
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Kondoz are with the I-Lab, Centre for Communication Systems Research
(CCSR), University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
(E-mail addresses: huseyin.hacihabiboglu@kcl.ac.uk; b.gunel@surrey.ac.uk;
a.kondoz@surrey.ac.uk). The work reported in this article was carried out
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such as diffraction and occlusion. The simulation of these
phenomena requires complex modifications to the original
methods [4]. In addition, they also fail to provide accurate
predictions at low and mid-range frequencies.

Analytical solutions of the wave equation for volumes with
complex geometries are not possible. However, numerical
modeling methods which utilize approximate local solutions
of the wave equation provide accurate predictions of the
sound field at a given problem domain. The problem do-
main is discretized into a finite number of elements and
the numerical solution of the wave equation is obtained by
basic algebraic operations either in time or in frequency
domains. Several different numerical methods exist such as the
finite element method (FEM) [5], boundary element method
(BEM) [6], finite-difference time domain (FDTD) methods [7],
[8], wave digital filters (WDF) [9], and digital waveguide
meshes (DWM) [10] which make it possible to obtain accurate
predictions of sound fields at low and mid-range frequencies.
As these methods are based on the solution of the wave
equation, wave related phenomena such as diffraction and
occlusion require no additional computational effort. Another
advantage of such numerical methods is that unlike geometri-
cal modeling methods, they provide impulse responses at each
and every discrete space element without the need to explicitly
address visibility or obstruction issues which make up for
the most of the computational load in geometrical modeling
methods [11]. Digital waveguide meshes (DWM) among other
numerical methods provide a computationally simple, time-
domain approach to numerical modeling of sound fields in
volumes. DWMs provide the traveling wave solution for
wave propagation at low and mid-range frequencies. DWMs
were also shown to provide equivalent results with the more
mainstream FDTD methods [12].

A common problem in all acoustical prediction methods
is the modeling of the source directivity. Usually, impulse
responses in a modeled acoustical system are obtained by
using an omnidirectional point source excitation, and by
registering the pressure fluctuation at a given point in the
modeled volume. However, acoustical sources are never om-
nidirectional in real life. All real sound sources such as the
human mouth [13]–[15] or musical instruments [16] radiate
sound unevenly towards different directions and for different
frequencies. Geometrical modeling methods try to solve this
problem by directionally weighting the emitted rays or beams
in ray or beam tracing methods [17] or directionally filtering
the impulse responses of individual image sources in ISM [18].
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There exist several methods for numerically simulating
acoustical fields generated by directional sound sources based
on the source simulation concept [19]. These include spherical
harmonic decomposition [20], wave superposition [21], [22],
and multipole synthesis [20], [23]. These methods are based on
the harmonic solution of the wave equation and they operate
in the frequency domain. As such, they generally provide
a correct simulation of the acoustical field generated by a
directional source at a single frequency per simulation and
not for a broadband excitation. A time-domain formulation
of the source simulation method for broadband excitation has
also been proposed [24].

There has been little emphasis on the simulation of direc-
tional acoustical sources with time-domain methods such as
DWM-based acoustical models. A method for the simulation
of sources with frequency-independent directivity functions on
2D DWMs has previously been proposed by the authors [25].
Subsequently, the direct application of the method of multipole
synthesis has been proposed as an alternative solution to
simulate source directivity for the harmonic excitation of time-
domain numerical acoustical models [26]. Both methods are
only partly useful in the sense that the former cannot simulate
frequency-dependent source directivity, and the latter in prac-
tice works only for single or multiple excitation frequencies
which makes it impossible to simulate the model with a
broadband, impulsive stimulus covering the whole spectrum.

This paper presents two methods for the simulation of
sources with (1) analytically defined, and (2) empirically
measured directivity functions within 3D DWM-based models.
It is organized as follows: Section II presents a brief overview
of digital waveguide meshes. Section III provides a physical
interpretation of the notion of source directivity. Section IV
proposes two methods for the simulation of analytical and
empirical sources in 3D DWM models. In addition, an inter-
polation method for obtaining a closed form directivity func-
tion from incomplete directivity measurements is presented.
Section V provides examples of simulation on a 3D DWM
mesh using source models for an ideal dipole and a baritone
singer. Section VI concludes the paper.

II. DIGITAL WAVEGUIDE MESH MODELS

Digital waveguide meshes (DWM) provide second-order
accurate solutions of the wave equation in the discrete-time
domain. DWMs provide a traveling wave solution and can
easily be integrated with other signal processing algorithms
that are involved in audio synthesis and acoustical modeling.
DWM models are generalizations to multiple dimensions of
the concept of digital waveguides which have been used to
simulate acoustical resonators such as vibrating strings [10],
[27]. DWM models have successfully been used in a number
of acoustical modeling problems such as the modeling of
the vocal tract [28], drum membranes [29], and room acous-
tics [30]–[32]. There are two types of DWM models, the W-
DWM which employs wave variables and the K-DWM which
employs Kirchhoff variables [33], [34]. The DWM model
employed in this paper is the W-DWM, which is the original
formulation of the DWM.

DWM models require the spatial discretization of the prob-
lem domain into a finite number of elements called the
scattering junctions. Each scattering junction is connected
to its neighbors via digital waveguides which are simple
bidirectional integer delay elements forming a mesh [35]. The
junction equations determine how scattering is carried out at
the junction.

Let us consider a scattering junction (Sx) positioned at the
point x = [x0 · · · xK−1] in a K-dimensional discretized
problem domain. Sx is connected to a number of other
scattering junctions via bidirectional delays over their input
and output ports. Pressure values at each port (pi) and the
scattering junction pressure (pJ ) are equal to each other, and
the sum of all port velocities (vi) of the given scattering
junction is zero. If the scattering junction has L ports this
can be expressed as:

p1 = p2 = · · · = pL = pJ , (1)
L∑
i=1

vi = 0. (2)

The flow-like wave variables, p−i and p+
i , whose difference

correspond to particle velocity at port i, vi are defined as:

vi = Yi
(
p−i − p+

i

)
ui, (3)

pJ = p−i + p+
i . (4)

Here, p+
i and p−i are the incoming (incident) and outgoing

(reflected) wave variables at the port i, respectively, Yi is the
port admittance, and ui represents the outward radial unit vec-
tor from the junction along the direction of the corresponding
waveguide. The junction pressure is then defined as a function
of incoming pressure wave variables as:

pJ = 2
L∑
i=1

Yip
+
i

/ L∑
i=1

Yi. (5)

For isotropic media, all port admittances are equal, and it is
possible to express junction pressure as a weighted sum of
incoming wave variables such that:

pJ =
2
L

L∑
i=1

p+
i . (6)

Once the junction variables are obtained from incoming wave
variables using (6) the outgoing wave variables can then be
calculated using (4) and propagated to the junction’s corre-
sponding neighbors as their incoming wave variables for the
next iteration step. As a result, the DWM model provides the
traveling wave solution of the wave equation at each iteration
for discrete time and space.

Therefore, it is possible to define the operation of the DWM
as a two step process:

1) Scattering pass is the calculation of the outgoing wave
variables carried out by scattering the incoming wave
variables in a junction as in (6). It is possible to skip
the calculation of the junction pressure and use a matrix
multiplication instead to obtain the outgoing wave vari-
ables directly from the incoming wave variables [36].
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2) Propagation step is the shifting of outgoing wave vari-
ables through the bidirectional delays (i.e. digital waveg-
uides) within the DWM to obtain the incoming wave
variables for the next iteration.

The upper frequency limit of the DWM mesh is given
as fu = 0.25fS where fS is the update frequency of the
mesh [31]. Above this frequency limit, the simulation results
will not be valid due to aliasing. The actual frequency band-
widths of multidimensional DWMs are direction dependent.
However, they are always be less than fu.

Several different 3D mesh topologies exist for simulating
wave propagation in volumes [37], [38]. Among these, the
uniform rectilinear mesh topology provides a more attractive
option in terms of the intuitive positioning of its junctions and
the accuracy of numerical derivatives when the mesh density
(i.e. the number of junctions per unit volume) is constant [39].
It also allows a more structured memory organization and
has a well-documented prospect for software optimization and
parallelization [40], [41]. Therefore although it has higher
directional dispersion errors [42] and a higher computational
complexity [38] than other 3D mesh topologies, uniformly
sampled rectilinear topology is preferred for the examples in
this paper. It should be noted that with slight modifications,
the methods proposed in this article can be applied to other
mesh topologies easily.

A given junction in a uniformly sampled rectilinear mesh
has a total of six neighboring junctions on its x, y, and z
axes. As a matter of convenience, the junctions can be indexed
consistently with their Cartesian coordinates. The ports of a
junction associated with each neighboring junction can be
geographically named as N (North), S (South), E (East), W
(West), U (Up), and D (Down) situated at xN = x+[0 ∆d 0],
xS = x− [0 ∆d 0], xE = x + [∆d 0 0], xW = x− [∆d 0 0],
xU = x + [0 0 ∆d], and xD = x − [0 0 ∆d], respectively.
Here, ∆d represents the unit space between the junctions in
the DWM or its spatial sampling period. The wave speed, c′

in uniform rectilinear 3D DWM is defined as:

c′ =
fS ∆d√

3
, (7)

The spatial sampling period ∆d is selected such that c′ is equal
to the speed of sound in air at the given temporal sampling
frequency.

The readers are referred to [10], [12], [35], [36], [42] for
further details of the DWM models including their stability,
dispersion, mesh topologies, and implementation.

III. SOURCE DIRECTIVITY

The source directivity, Γ(θ, φ), is intimately related to the
radiation pattern of a source, J(θ, φ), defined as the acoustic
power radiated per unit solid angle [43], where 0 ≤ θ < 2π
and −π/2 ≤ φ ≤ π/2 are the azimuth and elevation angles,
respectively. Let us assume for the time being that the radiation
pattern, and thus the directivity function are independent of
frequency.

The instantaneous intensity of the sound field in the radial
direction from the center of the directional source is defined
as I = pv, where p is the instantaneous pressure and v is the

instantaneous particle velocity component of the sound field.
The average intensity at a radial distance, r, is defined as:

I(r, θ, φ) =
J(θ, φ)
r2

ûr, (8)

=
1

∆T

∫ t0+∆T

t0

I(r, θ, φ, t) dt, (9)

where ûr is the unit vector in the radial direction of the
source. Then, the radiation pattern of the source, J(θ, φ), can
be expressed as:

J(θ, φ) =
r2

∆T

∫ t0+∆T

t0

pv · ûr dt. (10)

Let us consider the velocity potential, Φ, from which the
pressure and velocity parameters can be derived, such that:

v = ∇Φ, p = −ρ∂Φ
∂t
, (11)

where ρ represents the ambient density, and ∇ denotes the
gradient operator.

The velocity potential for an omnidirectional, spherically
symmetric source is Φo(r, t) = −G(t − c−1r)/ρr where
G is an arbitrary function. It is possible to express the
omnidirectional velocity and pressure components as [43]:

vo(r, t) =
[
po(r, t)
cρ

+
G(t− c−1r)

ρr2

]
ur, (12)

po(r, t) =
1
r

∂

∂t
G(t− c−1r). (13)

The second term on the r.h.s. of (12) is inversely pro-
portional to the square of distance from the source and is
negligible in the far-field. The radiation pattern in the far-field
for an omnidirectional source can thus be defined as:

Jo =
1

ρc∆T

∫ t0+∆T

t0

g2(t− c−1r) dt, (14)

where g(t) = dG(t)/dt. The omnidirectional radiation pattern,
Jo, is constant across θ and φ as the source has equal intensity
for all directions.

Let us define a directional velocity potential, Φd, such that:

Φd(r, θ, φ, t) = Γ(θ, φ) Φo(r, t), (15)

where the omnidirectional velocity potential, Φo, is weighted
by the directivity function, Γ(θ, φ). At an observation point
in the acoustical far-field of the source and with the constant
vorticity assumption [43], the directional velocity and pressure
components can be expressed using (11) as:

vd(r, θ, φ, t) = Γ(θ, φ) vo(r, t) (16)
pd(r, θ, φ, t) = Γ(θ, φ) po(r, t). (17)

Then, the radiation pattern as measured in the far-field for the
directional source is:

Jd(θ, φ) = |Γ(θ, φ)|2 Jo. (18)

Using the concept of secondary sources on the wavefront,
following the Huygens’ principle and the Kirchhoff-Helmholtz
integral, it may be suggested from (16) and (17) that, if the
omnidirectional velocity field or pressure field and the source
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directivity function at a measurement distance, R0, in the
acoustical far-field are known, the directional response of the
source can be obtained for t ≥ c−1R0.

Following the discussion on the far-field component it is
possible to define two different directivity functions: Analyti-
cal directivity function refers to the directivity function math-
ematically defined for the source at the instant of excitation.
Empirical directivity function in contrast, is the directivity
function measured at a distance, generally in the acoustical far-
field, and is thus considered to be free from the contribution
of the near-field components.

The discussion above has two important results which will
be discussed further in the following section:

1) If the analytical far-field directivity function is known for
a sound source at the instant of excitation, it is possible
to excite the DWM model using the velocity field
derived from an omnidirectional velocity potential by
directional weighting to simulate the wave propagation
from the source. The simulated wavefront will display
the properties of that source in the far-field.

2) If the empirical directivity function of a sound source
measured at the acoustical far-field is known, it may
be used to obtain a directional velocity vector field to
simulate wave propagation for distances greater than or
equal to the distance at which the empirical directivity
function measurement was made.

IV. SIMULATION OF SOURCE DIRECTIVITY ON 3D DWM
MODELS

As mentioned above, directivity functions are classified
into two groups in this article as analytical and empirical
directivity functions. It is possible to use analytical direc-
tivity functions to weight the initial velocity field directly
for designating a directional source distribution to excite the
DWM model. The empirical directivity functions are valid
only for distances greater than or equal to the distance at which
the measurement is made. Therefore, sources with known
analytical and empirical directivity functions require different
excitation strategies. Two methods are presented in this sec-
tion. The first method is a generalization of the previous work
by the authors [25] to three-dimensions for the simulation
of analytical source directivities. The second method is for
the broadband simulation of sources with frequency-dependent
empirical directivity functions.

A. Analytical source directivity

For obtaining the acoustical impulse response in a volume,
DWM models are generally excited with a bandlimited spatial
impulse by setting the junction pressures in such a way that the
pressure values are symmetrically distributed around a central
excitation point. After setting the initial junction pressure
distribution, the iteration is started at the scattering step. If all
the incoming wave variables are set to zero, all the outgoing
wave variables will be equal to the initial junction pressure
from (6) effectively designating each junction as an individual
omnidirectional source. This allows for a bandlimited omni-
directional impulse to be positioned at the excitation point.

The analytical directivity function can be used for direc-
tionally weighting the source velocity distribution at the initial
excitation stage of the DWM model. Instead of setting both
the junction pressures and the incoming wave variables, the
outgoing wave variables can be initialized and the iteration
started with the propagation step instead of the scattering pass.
In what follows, the simulation of directive sources using this
strategy is described.

Firstly, a spatially bandlimited excitation pulse is selected as
the omnidirectional velocity potential. A good omnidirectional
velocity potential function must be spherically symmetric
and should provide a good attenuation for higher spatial
frequencies to have a low spatial aliasing. A suitable candidate
is the symmetric trivariate Gaussian function weighted with
the inverse of the ambient density, ρ−1. This function can be
expressed in the Cartesian coordinates for an arbitrary position
x = [x y z]T and a mean spatial position µ̄ = [µx µy µz]Tas:

Φo(x, µ̄, n) = − 1
ρ(2π)

3
2σ3

e−|x−µ̄|
2/2σ2

δ[n], (19)

where δ[n] is the Dirac delta function, |x| represents the L2-
norm of the vector x. As the distribution is symmetric, all the
variance terms are equal to σ2 and all the covariance terms are
zero. Note that, in order to designate Φo as the initial velocity
potential of a sound source, its sign is selected to be negative.

The initial omnidirectional velocity, vo(x, n) =
[vx(x, n) vy(x, n) vz(x, n)], at the given position x can then
be calculated using (11) with a change of coordinates from
spherical to Cartesian as:

vo(x, n) =
e−|x−µ̄|

2/2σ2

ρ(2π)
3
2σ5

(x− µ̄) δ[n], (20)

The directional velocity vectors with which the DWM is
initialized can then be obtained as:

ṽ(x, 0) = Γ(θ − ϑ, φ− ϕ) vo(x, 0), (21)

where Γ(θ, φ) is the frequency independent directivity function
with arbitrary rotation angles ϑ in azimuth and ϕ in elevation.
Here, θ = tan−1( y−µy

x−µx
) and φ = tan−1( z−µz√

(x−µx)2+(y−µy)2
).

The excitation of a DWM using such a directional velocity
field requires setting the relevant parameters of the model
accordingly. Due to the zero initial state assumption the
incoming pressure variables for each junction are set to zero
(i.e. p+

i (x̂, 0) = 0). The local velocity variables at each port
can then be expressed in terms of the wave variables using (3)
as:

vi(x̂, n) = Y p−i (x̂, n)ui, (22)

where Y is the common port admittance, i represents any
of N, S, E, W, U, or D, and x̂ = [x̂ ŷ ẑ]T is the discrete
spatial position in the model. In the original formulation of
DWMs a particle velocity variable is not defined at a junction.
Therefore, we define the junction velocity at a given sample
time, n as:

vx(x̂, n) = vE(x̂, n)− vW (x̂, n), (23)
vy(x̂, n) = vN (x̂, n)− vS(x̂, n), (24)
vz(x̂, n) = vU (x̂, n)− vD(x̂, n), (25)
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consistently with the Cartesian coordinate system. A simi-
lar approach for obtaining the particle velocity at a given
junction has previously been proposed in a different context
for modeling direction dependent absorption at DWM model
boundaries [44].

At the initialization stage (i.e. n = 0), the velocity compo-
nents are:

ṽx(x̂, 0) = Y
[
p−E(x̂, 0)− p−W (x̂, 0)

]
, (26)

ṽy(x̂, 0) = Y
[
p−N (x̂, 0)− p−S (x̂, 0)

]
, (27)

ṽz(x̂, 0) = Y
[
p−U (x̂, 0)− p−D(x̂, 0)

]
. (28)

Here, the assumption is made that the discretization of space
is made in such a way that the local (i.e. junction) and global
(i.e. model) coordinate systems are co-directional. In other
words, the x, y, and z directions for a given junction coincide
with those of the overall model. The following selection is
made for convenience: In octant I, p−W (x̂, 0) = p−S (x̂, 0) =
p−D(x̂, 0) = 0, in octant II, p−E(x̂, 0) = p−S (x̂, 0) = p−D(x̂, 0) =
0, in octant III, p−E(x̂, 0) = p−N (x̂, 0) = p−D(x̂, 0) = 0,
in octant IV, p−W (x̂, 0) = p−N (x̂, 0) = p−D(x̂, 0) = 0, in
octant V, p−W (x̂, 0) = p−S (x̂, 0) = p−U (x̂, 0) = 0, in octant
VI, p−E(x̂, 0) = p−S (x̂, 0) = p−U (x̂, 0) = 0, in octant VII,
p−E(x̂, 0) = p−N (x̂, 0) = p−U (x̂, 0) = 0, and finally in octant
VIII, p−W (x̂, 0) = p−N (x̂, 0) = p−U (x̂, 0) = 0.

The outgoing wave variables are then initialized accordingly
by using the velocity values obtained by weighting the gradient
of the selected velocity potential function defined as in (20)
and (21). After the initialization stage, the iteration is started at
the propagation step instead of the scattering pass. The wave
propagation pattern and the room impulse response obtained
at any given point in the far-field of the source is that of an
excitation by the analytical directional source. It is possible to
simulate simple sources such as ideal dipoles and quadrupoles
as well as sources with analytically defined directivities such
as line arrays [45] this way. Algorithm 1 provides a summary
of the procedure described in this section.

It should be noted that, due to the original assumption in
(16) and (17) which decouples the azimuth (θ) and elevation
(φ) dependency of the directivity from the frequency (f ) and
distance (r), the simulated directional wavefront will only
be correct in the far-field. As with the present assumption
regarding an omnidirectional velocity potential, the velocity
components are in the radial direction of the simulated source
only. Considering that the model is linear and time-invariant
and that the near-field components may be modeled as an
additive term for spherically symmetric wave propagation as
discussed in Section III and given in (12), the fact that the
model is not excited with the exact velocity values with both
the near and far-field components does not impair the ability of
the proposed method to simulate directivity of analytic sources
in the far-field.

B. Empirical source directivity

1) Weighting in the spatial frequency domain: The fol-
lowing procedure also summarized in Fig. 1 is carried out
to simulate sound sources for which directivity functions
measured in the acoustical far-field are available.

Algorithm 1 Analytical directivity
Initialize ROOM {ROOM is the 3D DWM model}
Select an omnidirectional velocity potential, Φo
Sample the velocity potential at the discrete positions in
ROOM
Obtain an omnidirectional velocity field, vo, by the numer-
ical gradient of sampled velocity potential
Set the excitation point as µ̄
for all junctions in ROOM do

Obtain the directive particle velocity at x̂ by weighting
with Γ(θ, φ)
The point x̂ in situated in OCTANT
if OCTANT is I then

Set p−E(x̂, 0) = vx(x̂, 0)/Y
Set p−N (x̂, 0) = vy(x̂, 0)/Y
Set p−U (x̂, 0) = vz(x̂, 0)/Y

else if OCTANT is II then
...

end if
end for
repeat

propagate(ROOM)
scatter(ROOM)

until the desired iteration count is reached

The measurements of the directivity function are assumed
to be made at the measurement distance R0 in the acoustical
far-field of the source. Therefore, the directivity of the source
is not known for R < R0. In other words, the near-field
effects are either neglected or assumed to be unknown. Let
us also assume that the wavefront emitted by the source is
spherical. This assumption allows using a monopole (i.e. an
omnidirectional pressure source) to excite the DWM. The
mesh can thus be initialized by setting the junction pressures
and the simulation is started at the scattering step. The model
is iterated for nt steps until the wavefront reaches the radius
R0 such that:

nt =

⌊
R0

√
3

∆d

⌋
=
⌊
R0 fS
c

⌋
, (29)

where b•c denotes the floor function. The outgoing wave
variables p−i (x̂, nt) are obtained for all of the junctions in
the model.

Empirical directivity functions are generally tabulated in
octave-band resolution. This necessitates the decomposition
of the numerical results obtained from the model into octave-
bands before any weighting is carried out. This requires either
using multidimensional filtering in space domain or win-
dowing in spatial frequency domain. Therefore, the obtained
numerical results need to be transformed into spatial frequency
domain first. Six M×M×M element 3D matrices of outgoing
wave variables are obtained within a cubic volume, VM . VM
is selected in such a way that the center of the cubic volume
is coincident with the point of excitation and the boundaries
of the volume lie within the undisturbed section of the DWM
model. Let us denote these matrices and their representation in
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Outgoing wave
variables

M ×M ×M

p−i (x, nt)

i ∈ {N,S,E,W,U,D}

F3D

P−
i (ξ, nt)

3D octave-band
windows

W63

W125

W250

W500

W1k

W2k

W4k

W8k

F−1
3D

..

..

..

..

..

..

..

p−i,1k(x, nt)

×

Γ1k(θ, φ)

Directivity
function

Σ

..

..

..

..
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Fig. 1. The calculation of the directional outgoing wave variables, p̃−i (x̂, nt), where p−i (x̂, nt) represents 3D matrices of outgoing wave variables,
P−i (x̂, nt) represents the same matrix after 3D discrete space Fourier transform is applied, WC represents the 3D octave-band window, and ΓC(θ, φ)
represents the directivity function for the octave-band with a center frequency of fC .

spatial frequency domain after applying the 3D discrete space
Fourier transform as:

p−i (x̂, nt)
F3D−−−→ P−i (ξ, nt). (30)

where i ∈ {N, S, E, W, U, D}. Here, 3D discrete-space
Fourier transform is defined as:

P−i (ξ, n) =
M−1∑
k=0

M−1∑
l=0

M−1∑
m=0

p−i (x̂, n)e−j 2πξ·x, (31)

where x = [k∆d l∆d m∆d] ∈ VM and ξ = [ξx ξy ξz] are the
position and spatial frequency vectors, respectively. If the 3D
discrete space Fourier transform is carried out using an M -
point 3D FFT, an M ×M ×M 3D matrix would be obtained.

To simulate a source with such directivity tabulated in
octave-band resolution, components of the wavefront at those
octave-bands need to be calculated. A windowing operation
in the spatial frequency domain, which corresponds to zero-
phase filtering, is carried out for calculating these octave-
band components. The 3D octave-band windows used in this
operation are obtained in the following way:

The spatial frequencies ξ = [ξx ξy ξz] are related to the
temporal frequency, ft in a 3D DWM model as [46]:

ft =
fS |ξ|√

3
= fS

√
(ξ2
x + ξ2

y + ξ2
z)/3. (32)

In other words the spatial frequencies and the temporal fre-
quency can be used interchangeably in the context of DWM
modeling as each discrete point in the spatial frequency
domain corresponds to a single temporal frequency. For ob-
taining a 3D octave-band window with a given temporal center
frequency fC , a prototype filter, HC(f) with the specifications
given in IEC 61260:1995 [47] is designed as a 6th-order But-
terworth filter. Using the correspondence between the temporal
and spatial frequencies, the M × M × M 3D octave-band
window, WC(ξ), is obtained as:

WC(ξ) =
∣∣∣∣HC

(
fS |ξ|√

3

)∣∣∣∣ . (33)

Note that this simple, real-valued 3D window is spherically
symmetric. The outgoing wave variable components at each

octave-band are calculated in spatial frequency domain as:

P−i,C(ξ, nt) = P−i (ξ, nt) •WC(ξ), (34)

where • denotes the Hadamard (i.e. elementwise) product
of two matrices. The space domain components decomposed
into octave-bands, p−i,C(x̂, nt), are obtained by applying an
M -point 3D IFFT. It should be noted that the output of
the 3D IFFT is a complex matrix for which the imaginary
parts occurring due to the zero-phase octave-band windowing
are negligibly small. Ideally, minimum-phase 3D filters may
be used to obtain the octave-band components. However,
spherical symmetry of the employed 3D octave-band windows
is a property which is hard if not impossible to obtain for
3D filters designed using existing multivariate filter design
techniques [48].

The outgoing wave variable components at each octave-
band are then weighted in the space-domain with the directiv-
ity values at the corresponding octave-band in order to obtain
the directional outgoing wave variables such that:

p̃−i,C(x̂, nt) = ΓC(θ, φ) p−i,C(x̂, nt) (35)

where p̃−i,C represents the directional outgoing wave variable
components at the octave-band with center frequency fC , and
ΓC(θ, φ) is the value of the empirical directivity function at
the same octave-band for the direction of the given point, x̂,
with respect to the origin of excitation.

The directional outgoing wave variables, p̃−i (x̂, nt), to be
used for exciting the DWM model are obtained by the summa-
tion of the calculated outgoing wave variables, p̃−i,C(x̂, nt) for
all the octave bands. The model is excited at the propagation
step after setting the p−i values accordingly. Starting with the
iteration nt + 1, the wavefront will exhibit the directional
characteristics of the simulated sound source. Algorithm 2 is
a summary of the procedure described in this section.

Due to the linearity of the model, it is also possible
to excite the mesh several times with different octave-band
filtered pulses and obtain the simulation of the corresponding
directional wavefront by the summation of the results of these
simulations.
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Algorithm 2 Empirical directivity
Initialize ROOM {ROOM is the 3D DWM model}
Excite ROOM with an omnidirectional pulse centered at
µ̄ = [µx, µy, µz]
for n = 1 to nt do

propagate(ROOM)
scatter(ROOM)

end for
Select an M ×M ×M cubic volume VM centered at µ̄
Obtain the outgoing wave variables p−k (x̂, nt) such that k ∈
{N,S,E,W,U,D}
for all k such that k ∈ {N,S,E,W,U,D} do

P−k (ξ, nt) = FFT3
[
p−k (x̂, nt)

] {FFT3 is the 3D fast
Fourier transform}
for all fC ∈ {63, 125, 250, 500, 1k, 2k, 4k, 8k} do

P−k,C(ξ, nt) = WC •P−k (ξ, nt)
{WC is the 3D octave-band window at fC}
p−k,C(x̂, nt) = IFFT3

[
P−k,C(ξ, nt)

]
{IFFT3 is the 3D

inverse fast Fourier transform}
for all x in VM do

Calculate θ and φ
p̃−k,C(x̂, nt) = ΓC(θ, φ) p−k,C(x̂, nt){ΓC is the di-
rectivity function at fC}

end for
end for
p̃−k (x̂, nt) =

∑
C p̃−k,C(x̂, nt){Sum of all weighted 3D

octave-band matrices}
end for
Update the corresponding outgoing wave variables of
ROOM with p̃−k (x̂, nt)
repeat

propagate(ROOM)
scatter(ROOM)

until the desired iteration count is reached

The method detailed above assumes the knowledge of the
directivity function for all possible directions. However, di-
rectivity measurements of real sources are generally tabulated
not for every possible direction around the source, but only
for the horizontal and vertical planes making it problematic
to apply the available measurements directly. Therefore, it
is necessary to obtain a closed-form representation for the
directivity function from the incomplete directivity measure-
ments. A simple functional interpolation method based on
curve fitting is described in the following section.

2) Interpolation of directivity functions: Let us assume
that two sets of directivity measurements, ΓC,h(θ, 0) and
ΓC,v(0, φ), are available on the horizontal and vertical planes
of the sound source respectively, at the octave bands with cen-
ter frequencies fC . The interpolation of a directivity function
is the process of obtaining a directivity function defined for
all possible directions from a set of incomplete measurements
made at a limited set of directions. In other words, the aim is
to obtain a closed-form function Γ′C(θ, φ) for each fC that ap-
proximate the underlying (i.e. actual) directivity function from
which a limited set of measurements is available. The process

of obtaining an analytical expression from the measured data
is also known as curve-fitting compaction [49] as it allows the
compact storage of the underlying, measured directivity data.

The data from measurements on the horizontal and vertical
planes at a given octave band are first fit to closed curves using
shape-preserving piecewise cubic splines such that:

ΓC(θ) ≈ Γ′C,h(θ, 0) = QC,h(θ), (36)
ΓC(φ) ≈ Γ′C,v(0, φ) = QC,v(φ), (37)

where QC,h and QC,v are piecewise functions approximating
the shape of the original measurement points on horizontal and
vertical planes respectively. In order to obtain the values of
the directivity function for any given direction, the following
interpolation is carried out:

Γ′C(θ, φ) = QC,h(θ)ρ(θ, φ) +QC,v(φ) [1− ρ(θ, φ)] . (38)

where ρ(θ, φ) is a smooth function and 0 ≤ ρ(θ, φ) ≤ 1.
Ideally, ρ(mπ, φ) = 0 and ρ(θ, nπ) = 1 so that the interpo-
lated function is exactly equal to QC,h(θ) on the horizontal
plane, and to QC,v(φ) on the vertical plane. However, such a
smooth bivariate function does not exist due to discontinuities
occurring at θ = ±mπ, and φ = ±nπ. Therefore an
approximate function is selected such that:

ρ(θ, φ) = 0.5
[
sin2 θ + cos2 φ

]
(39)

The closed-form definition of the directivity function allows
the interpolation of intermediate values between horizontal
and vertical planes. In addition, it allows easy rotation of the
modeled directivity function in azimuth and elevation.

Fig. 2 shows the interpolated directivity function for a bari-
tone singer obtained from [50]. The interpolated directivities
on horizontal; i.e. Q1k,h(θ), and vertical; i.e. Q1k,v(φ), planes
and the interpolated directivity balloon for fC = 1 kHz are
shown. Although the applied interpolation is not based on a
physical interpretation, it is preferred for its simplicity and
generality.

V. SIMULATIONS ON A 3D DIGITAL WAVEGUIDE MESH

A. The employed 3D DWM model

The DWM used in the simulations was a uniformly sampled
rectilinear mesh with 458 × 352 × 302 elements modeling
a rectangular room. At the temporal sampling frequency of
fS = 44.1 kHz and for the speed of sound, c = 344 m/s, the
interjunction distance, ∆d ≈ 0.0135 m, and the physical size
of the modeled enclosure is approximately 6.19 m×4.76 m×
4.08 m. The boundaries were selected to be fully reflective at
all frequency bands, i.e. the absorption coefficient α = 0.

As the proposed methods need to access the outgoing
wave variables, the memory requirements of the DWM model
needed to be doubled. The resulting memory requirements
of the mesh made it necessary to employ a single precision
implementation instead of double precision. By employing
such design considerations, the size of the 3D DWM model
was approximately 2.2 GB. For speeding up the simulation,
Altivec extensions of the PowerPC architecture were employed
and the code was hand-optimized. The system over which the
simulation was executed had 4 PPC 970MP CPU cores with
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Fig. 2. The interpolated directivity of a baritone singer for the octave band
with the center frequency fC = 1 kHz. The projections to the left and bottom
planes show the curves fit to data for vertical and horizontal measurements,
respectively. The volume shows the interpolated directivity balloon.

1 MB L2 cache each, and an system memory of 8 GBs. Two
directional sources were simulated. The first source was an
ideal dipole with an analytical directivity. The second was
a baritone singer with empirical directivity data tabulated in
octave-band resolution.

In the following sections, the positions of the junctions in
the model at which the simulated directivities were obtained
do not exactly correspond to the actual intended directions
and measurement distance due to discretization. However, the
direction and distance uncertainty may be considered to be
negligible at the distance at which the directivity was obtained.

B. Analytical directivity: Ideal dipole

The ideal dipole is an approximation of a point velocity
source propagating two opposite phase wavefronts toward
opposite directions. A simple mathematical expression exists
for the far-field directivity of the ideal dipole such as:

Γ(θ, φ) = cos θ cosφ. (40)

The wave propagation is stronger in the front-back axis of the
dipole. There is no wave propagation on the plane perpen-
dicular to the look direction which also constitutes the nulls
of the directivity function (i.e. θ = ±π/2 and φ = ±π/2).
The wavefronts traveling in opposite directions generated by
a dipole source have opposite phase.

For simulating an ideal dipole, a trivariate Gaussian velocity
potential with a standard deviation of 0.04 was selected as
described in (19). It was normalized to have values between 0
and 1, and sampled on a 102× 102× 102 uniform rectilinear
grid. The initial velocity field to be used for exciting the
DWM was calculated by obtaining the numerical gradient of

xy-plane

yz-plane

xz-plane Orthogonal projection

1

Fig. 3. The visualization of the pressure field on the 3D DWM model
excited with an ideal dipole source showing the superimposed wavefronts at
the iterations nt = 50, 100, 150, 200, 250, 300, and 350. The left column
shows the propagation in xy, yz, and xz-planes. The right column shows the
orthogonal projection of the xy and xz-planes. Colormap ranges from black
(minimum) to white (maximum).

the sampled velocity potential, and weighting the obtained
omnidirectional velocity field by the analytical directivity
function.

Fig. 3 shows the superimposed sound fields for the iteration
steps n = 50, 100, 150, 200, 250, 300, and 350 at the xy, yz
and xz-planes and an orthogonal projection as visualized using
the volumetric visualization program, ParaView [51]. It may
be observed that there is no wave propagation in the yz-plane
that coincides with the nulls of the directivity function, while
the wavefronts in +x and −x directions have opposite phases.

Fig. 4 shows the directivity function for horizontal and
vertical planes obtained on the mesh at a distance R0 = 1 m
corresponding to a discrete sphere of radius R∆ = 74 ∆d
for the fC = 2 kHz band. The ideal directivity function was
also plotted for comparison. The angular interval between
the sampling points on both the horizontal and the vertical
planes was chosen as 10◦ for illustration purposes. As may
be observed, the sampled directivity on the mesh have a good
correspondence with the intended ideal dipole characteristics.

Table I summarizes the maximum (εmax) and averaged
(εavg) absolute errors between the ideal and the simulated
dipole directivity. We speculate without further elaboration that
the errors involved in the simulation of the analytical direc-
tivity are due to the direction dependent dispersion. Direction
dependence of the dispersion error may be reduced by using
other mesh topologies, or by using interpolated meshes [52]. In
addition, existing techniques such as frequency warping [46]
may be used with interpolated meshes to reduce the dispersion
error.

C. Empirical directivity: Baritone singer

Directivity measurements of a baritone singer were ob-
tained from Marshall and Meyer [50], and interpolation was
carried out as defined above. The mesh was excited with
an omnidirectional pressure field and iterated for nt = 128
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Fig. 4. Simulated and ideal dipole directivity functions at the octave-band
with the center frequency fC = 2 kHz . Open and filled circles represent
simulated directivity sampled on the horizontal and vertical planes of the
simulated dipole source, respectively. The solid gray line is the ideal dipole
directivity function.

TABLE I
MAXIMUM (εMAX ) AND AVERAGE (εAVG ) ABSOLUTE APPROXIMATION

ERRORS IN DB BETWEEN THE INTENDED AND SIMULATED IDEAL DIPOLE

DIRECTIVITY ON HORIZONTAL (φ = 0◦) AND VERTICAL (θ = 0◦)
PLANES.

fC (Hz)
125 250 500 1000 2000 4000

for εmax 0.57 0.49 0.49 0.58 2.19 5.67
φ = 0 εavg 0.18 0.14 0.12 0.13 0.58 1.90

for εmax 1.16 1.17 1.94 3.16 3.73 4.98
θ = 0 εavg 0.46 0.38 0.48 0.96 0.97 1.99

steps corresponding to R0 ' 1 m. The original excitation
was a normalized trivariate Gaussian function with a stan-
dard deviation of 0.04. The outgoing wave variables were
obtained in a 302 × 302 × 302-element cubic volume with
a center coincident with the original point of excitation.
The values corresponding to the velocity components were
transformed into spatial frequency domain via a 302-point
3D FFT and windowed with 3D octave-band windows at
fC = 125, 250, 500, 1000, 2000, 4000Hz. The upper
frequency limit for the simulation at the given temporal
sampling frequency is fu = 11025Hz. This value is lower
than the higher cut-off frequency of the octave-band filter with
fC = 8 kHz. Therefore, the octave-band with fC = 8 kHz
was not included in the simulation so as to prevent errors
due to aliasing. The space domain octave-band components
were obtained as the real portion of the results of a 3D IFFT.
Directional weighting was carried out at each octave-band and
the new full bandwidth outgoing wave variables were obtained
as a summation of these directional octave-band components.
The obtained outgoing wave variables were used for exciting
the model. The iterations were restarted at the propagation
step.

xy-plane

yz-plane

xz-plane Orthogonal projection

1

Fig. 5. The visualization of the pressure field on the 3D DWM model excited
with a directional source simulating a baritone singer. The superimposed
wavefronts at the iterations nt = 150, 200, 250, 300, 350, and 400 are
shown. The left column shows the propagation in xy, yz, and xz-planes.
The right column shows the orthogonal projection of the xy and xz-planes.
Colormap ranges from black (minimum) to white (maximum).

It should be noted that although the re-excitation of the
model with the wavefront at 1 m reduces the effect of
the near-field component, it does not completely eliminate
it. Some sound sources such as musical instruments have
significant near-field effects at that distance, particularly at
lower frequencies. However, as long as tabulated far-field
directivity functions are considered, the lack of information
on the full field variables, specifically the angular dependency
of the particle velocity makes it impossible to obtain a more
accurate simulation.

Fig. 5 shows the visualization of the superimposed sound
fields for the iteration steps nt = 150, 200, 250, 300, 350, and
400 for xy, yz and xz-planes and as an orthogonal projection.
It may be observed that the wavefronts are strongly directional
in the look direction of the simulated virtual source. The
portion of the wavefront propagating toward the −x direction
is significantly attenuated in comparison with the +x direction
as would be expected from a singer facing away.

Figs. 6 and 7 show the simulated directivity sampled on
the mesh for the horizontal and vertical planes at a distance
R = 1.5 m corresponding to a discrete sphere of radius
R∆ ≈ 110 ∆d for the octave-bands with center frequencies
fC = 125, 250, 500, 1000, 2000, 4000 Hz. The interpolated
directivity functions in the respective frequency bands are
also shown for comparison. As with the analytical directivity
simulation example, the angular interval between the sampling
points was chosen as 10◦ for illustration purposes. Initially, the
response of the mesh to the directional wavefront was obtained
by registering the fluctuation of junction pressure values at the
sampling points prior to the arrival of any reflection at those
points. These sequences are then filtered into octave-bands by
using 6th-order Butterworth octave-band filters. The directivity
values were obtained by calculating the rms amplitudes of
these octave-band components and normalizing the obtained
values to correspond to 0 dB for the front direction. The results
present a good correspondence between the original and the
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Fig. 6. The simulated and ideal directivity functions, ΓC(θ, φ), on the horizontal plane of the simulated baritone singer for the octave-bands with center
frequencies fC = 125, 250, 500, 1000, 2000, 4000 Hz. The solid lines represent the intended directivity functions. The filled points connected with
broken lines represent the directivity function sampled on the 3D DWM model. Note that the scale is not the same in all frequency bands.
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Fig. 7. The simulated and ideal directivity functions, ΓC(θ, φ), on the vertical plane for the simulated baritone singer for the octave-bands with center
frequencies fC = 125, 250, 500, 1000, 2000, 4000 Hz. The solid lines represent the intended directivity functions. The filled points connected with
broken lines represent the directivity function sampled on the 3D DWM model. Note that the scale is not the same in all frequency bands.
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Fig. 8. The directivity balloon for the simulated baritone at the octave-band
with the center frequency fC = 4 kHz. The figure shows the front, top, side
and orthographic views.

TABLE II
MAXIMUM (εMAX ) AND AVERAGE (εAVG ) APPROXIMATION ERRORS IN DB
BETWEEN THE INTENDED AND SIMULATED BARITONE DIRECTIVITY ON

THE HORIZONTAL (φ = 0◦) AND VERTICAL (θ = 0◦) PLANES.

fC (Hz)
125 250 500 1000 2000 4000

for εmax 4.63 2.67 1.19 2.46 2.21 3.21
φ = 0 εavg 1.81 0.92 0.41 1.20 0.76 1.04

for εmax 3.47 2.52 1.86 3.41 3.45 3.98
θ = 0 εavg 1.81 1.12 0.76 1.57 1.03 1.57

simulated directivities. Note that the ranges of the polar plots
are different in some of the frequency bands.

Table II shows the maximum and average errors in dB for
horizontal and vertical planes in each frequency band. It may
be observed that errors are higher in general for the fC =
125 Hz band. This may be due to the low spatial frequency
resolution of the 3D FFT for the given data size. It should be
noted that normalization with respect to an axial direction of
the cubic mesh also increases the maximum and average errors
as direction dependent dispersion will be more prominent in
axial directions specifically at higher frequency bands.

Fig. 8 shows the directivity at fC = 4 kHz obtained from
the simulation on the DWM on 648 sample points around
the simulated source with 10◦ separation both in azimuth and
elevation.

VI. CONCLUSIONS

Two methods for simulating source directivity within 3D
DWM models were presented in this paper. The first method is
used for simulating a point source with an analytical directivity

function. The DWM is excited with directionally weighted
outgoing wave variables, and the iteration is started at the
propagation step. The simulated directive wavefront will have
the directive properties of the source in the far-field. The
second method is used for simulating a sound source with
an empirical directivity function measured at the acoustical
far-field. The DWM is excited with an omnidirectional point
source and iterated to allow the resulting wavefront to arrive
at the acoustical far-field. The resulting wavefront is weighted
with the directivity function at different octave-bands. This
method requires the knowledge of the complete directivity
function at all points around the source. However, generally,
only a limited set of measurements is tabulated in literature.
To overcome this difficulty, a simple interpolation method to
obtain a functional description of the directivity function was
also described. Two application examples on a large uniformly
sampled rectilinear 3D DWM model of a room were given for
the analytical and the empirical directivity cases. It was shown
that the method can be successfully utilized for simulating
directional sources. The simulation results for an ideal dipole
show that the maximum absolute error between the simulated
and original directivity values is observed at the 4 kHz octave-
band and is around 5 dB. The average absolute error is less
that 2 dB for all frequency bands. The simulation results for
a source with an empirical directivity function show that the
maximum absolute error is lower than 5 dB and the average
error is less than 2 dB in all frequency bands. Although the
method was presented for uniformly sampled rectilinear 3D
DWMs in this paper, it can easily be applied to other DWM
topologies with slight modifications.
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