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Chapter 4

Overmodulation in Voltage

Feedforward Controlled Drives

4.1 Introduction

In the previous section the linear modulation range behavior of the modern car-

rier based PWM methods was studied in detail. Their performance characteris-

tics were analytically derived and graphically illustrated. It was shown several

modern PWM methods exhibit superior performance characteristics and their

application areas were identi�ed. However, all the carrier based PWM meth-

ods provide a linear relationship between the reference and the output voltages

within a limited range.

The linear voltage range of a PWM-VSI drive is mainly determined by the

modulator characteristics. Using the modulation index de�nition of the previous

chapter, full voltage utilization (six-step operating mode) occurs at Mi = 1.

Normalizing the triangular wave peak-to-peak signal magnitude to Vdc, it follows

that SPWM's linear modulation range ends at V1m = Vdc
2
, a modulation index



145

ofMimax[SPWM ] =
�

4
� 0:785. Inverter blanking time and minimum-pulse-width

constraints can further reduce the range of linearity by a considerable amount.

As a result, the voltage linearity of a drive, for example, in the SPWM case,

can be lost at as low a value as 70% of the six-step voltage, i.e. 0.7 modulation

index. Figure 4.1 illustrates the typical linear and nonlinear range modulation

waveforms of the SPWM method, and switching device gate logic signals. The

portion of the modulation wave having a larger magnitude than the triangular

wave peak value remains unmodulated, and the gate signals remain on or o� for

a full carrier cycle leading to a nonlinear reference-output voltage relationship.

The voltage linearity of a modulator can be signi�cantly increased by inject-

ing a zero sequence signal. For example, in the SVPWM case, the theoretical

limit can be easily calculated by evaluating the modulation signal at the 30�

point (see Fig. 3.7 SVPWM modulation waveform), where the zero sequence

signal becomes zero and this calculation yields Mimax[PWM ] =
�

2
p
3
� 0:907.

With the exception of THIPWM1/4, the theoretical linearity limit of all the

discussed zero sequence injection PWM methods is equal to this inverter the-

oretical limit. In the THIPWM1/4 method, the linearity is limited to 0.885

modulation index. However, in all these methods the inverter blanking time

and minimum-pulse-width constraints imply a narrower voltage linearity range

than the theoretical. Therefore, in all the discussed modulation methods, a

wide overmodulation range with poor performance characteristics results.

Operating in the nonlinear modulation range, or in more common terms
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Figure 4.1: SPWM modulation waveforms and switching device gate logic sig-
nals. (a): linear modulation range, (b): overmodulation range.
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the overmodulation range is problematic: large amount of subcarrier frequency

harmonic voltages/currents are generated, the fundamental component voltage

gain signi�cantly decreases, and the switching device gate pulses are abruptly

dropped. In V

f
controlled PWM-VSI AC motor drives, operation in this range

results in poor performance. The current ripple, and therefore, the torque

ripple substantially increases. Near the six-step operating point, the harmonic

current magnitude can become signi�cantly large and frequent overcurrent fault

conditions may occur. Abruptly eliminating narrow voltage pulses can induce

signi�cant transients and the poor overmodulation performance condition can

be further exacerbated.

On the other hand, full inverter voltage utilization is important from cost

and power density improvement perspectives. Also a drive with high overmod-

ulation performance is less sensitive to inverter DC link voltage disturbances.

In certain applications, operation in the overmodulation region may not be nec-

essary under normal operating conditions. However, a DC link voltage sag may

result an unintentional entrance to the overmodulation region. In particular, in

diode recti�er front end type drives (the widemost utilized recti�er type), AC

utility line voltage sag or fault conditions frequently occur and a drive operating

near its rated voltage may frequently enter the overmodulation region. Under

such conditions, a high performance overmodulation method could maintain

the drive performance as much as possible. Hence, increased drive reliability.

Therefore, the overmodulation region performance of a drive and its modulator

are important and will be investigated in this chapter in detail.
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With the focus being on the voltage feedforward controlled V

f
drives, in this

chapter the steady state overmodulation behavior of the modern modulators

and voltage feedforward drives will be investigated. Therefore, the fundamental

component voltage gain and steady state voltage/current waveform quality of

the modern modulators will be analyzed in detail and performance comparison

will follow. The in
uence of the blanking time on the modulator overmodulation

range performance will be discussed. The detailed analytical and numerical

investigations of modulator performance characteristics and the performance

comparison will aid the overmodulation region modulator selection and design

procedure. Following the establishment of high performance overmodulation

algorithms, the laboratory experiments will illustrate the e�ectiveness of the

proposed method.

4.2 Overmodulation Range Voltage Gain Char-

acteristics

In the triangle intersection technique, when the modulation wave magnitude

becomes larger than the peak of the triangular wave, switching during that

carrier cycle ceases, and the corresponding switch remains locked to the inverter

pole within the carrier cycle. This condition is de�ned as the \saturation" of

the particular phase. Though not commonly utilized, the terms \unmodulated

phase" will be frequently utilized in this thesis to indicate the modulation signal
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of the corresponding phase becomes larger than the triangular carrier wave and

modulation ceases. In the beginning of the overmodulation region, depending on

the modulator type, one or two of the three modulation waves are simultaneously

saturated. As the modulation index increases, the saturated segments of each

modulation wave and the number of simultaneously saturated phases increase

according to the waveform characteristic of each modulator until the six-step

operating mode is reached.

When saturation occurs, the reference per carrier cycle average voltage can

not be matched by the inverter, and a voltage gain reduction results. This

nonlinear voltage gain relation can be analyticallymodeled by Fourier analysis of

the saturated modulation wave independently of the carrier frequency. Utilizing

the modulation index de�nition, general formulas can be derived independent of

the inverter voltage. However, except for the SPWM method, the voltage gain

formulas of the carrier based PWM methods have not been reported, nor has

a detailed gain characteristic study been conducted [52, 147, 169]. The SPWM

method gain, and the gain of several other functions frequently encountered in

the servomechanism systems were established many decades ago and instead

of gain, the term \describing function" was utilized [52, 147]. However, the

zero sequence signal injection technique, which yields functions unique to three

phase systems, has not been common in control system applications. Therefore,

the gain functions of zero sequence signal injection PWM methods have not

been investigated until now. In the following, the gain formulas of the modern

modulators are derived and a comparative evaluation follows.
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Figure 4.2: Modulation index gain block diagram of a PWM-VSI

The fundamental component voltage gain of a modulator is the ratio of the

output voltage fundamental component peak value V1m to the reference modu-

lation wave fundamental component peak value V �
m. Utilizing the modulation

index and reference modulation index de�nitions, it can also be expressed in

terms of the modulation indices as:

G =
V1m

V �
m

=
Mi

M�
i

(4.1)

The fundamental component gain formulas can be utilized in the drive over-

modulation range behavior analysis, simulation, and control. With their analy-

sis and graphic illustration, the overmodulation region behavior of the modern

modulators can be studied and compared. The overmodulation region behavior

of the drive can be modeled with the gain functions in computer simulations.

With no PWM signals involved, the simulation can be rapid and accurate. The

gain functions can also be utilized in developing a gain linearizing block for a

drive controller such that proper voltage control is maintained. The the follow-

ing the voltage gain functions of the modern modulators are calculated.
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4.2.1 SPWM

As shown in Fig. 4.3, the SPWM modulation signal has quarter-wave symmetry

in the overmodulation region. Utilizing this quarterwave symmetry, we calcu-

late the fundamental component by means of Fourier analysis in the following

equation.

V1m =
4

�
(
Z �s

0
V �
m sin � sin �d� +

Z �

2

�s

Vdc

2
sin �d�) (4.2)

Writing the output voltage fundamental component in terms of the modu-

lation index value, the following relation between the reference voltage modula-

tion index M�
i , and output voltage fundamental component modulation index

Mi yields [169, 147, 52].

Mi = (
2

�
)M�

i arcsin (
�

4M�
i

) + (
1

2
)

s
1 � (

�

4M�
i

)2 (4.3)

Since the output voltage fundamental component is di�erent from the ref-

erence voltage, the output modulation index Mi has a di�erent value from the

reference modulation indexM�
i . Utilizing the de�nition of (4.1), the fundamen-

tal component voltage relation can be expressed by the following gain function.

G = (
2

�
) arcsin (

�

4M�
i

) + (
1

2M�
i

)

s
1� (

�

4M�
i

)2 (4.4)
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Figure 4.3: The sinusoidal PWM modulator saturation waveforms.

4.2.2 SVPWM

The overmodulation range characteristics of the triangle intersection implemen-

tation of the SVPWM can be closed form modeled in the same manner as

SPWM. As illustrated in Fig. 4.4, the overmodulation region consists of two

sub-regions. Region I has two intersections between the saturation line and the

modulation waveform per quarter wave while region II has only one intersection.

Employing Fourier analysis, the fundamental component modulation index and

voltage gain relations of overmodulation region I are found as follows.

Mi = �
1

2
M�

i +
3

�
M�

i arcsin (
�

2
p
3M�

i

) +

p
3

2

s
1� (

�

2
p
3M�

i

)2 (4.5)
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Figure 4.4: SVPWM triangle intersection method modulation waveforms in the
overmodulation region. (a): Region I, (b): Region II.

G = �1

2
+

3

�
arcsin (

�

2
p
3M�

i

) +

p
3

2M�
i

s
1� (

�

2
p
3M�

i

)2 (4.6)

Region II begins at M�
i = �

3
� 1:047 (Mi � 0:957), and the modulation

index and gain relations in this region are calculated as follows.

Mi =
3

�
M�

i arcsin (
�

6M�
i

) +
1

2

s
1 � (

�

6M�
i

)2 (4.7)

G =
3

�
arcsin (

�

6M�
i

) +
1

2M�
i

s
1� (

�

6M�
i

)2 (4.8)

4.2.3 THIPWM1/6

The zero sequence signal of THIPWM1/6 can be algebraically de�ned as v0 =

1
6
V1m sin(3wet) [32]. This de�nition is based on the assumption that the as-

sociated modulation function prior to zero sequence signal injection is a sine
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Figure 4.5: THIPWM1/6 waveforms in the overmodulation region. (a): Region
I, (b): Region II.

function. The overmodulation voltage gain relations of this method are quite

similar to the SVPWM methods.

As shown in Fig. 4.5 (a), in region I, the modulator waveform intersects with

the saturation line twice per quarter-fundamental cycle. The intersection angles

are calculated from the following transcendental equation.

sin�1;2 +
1

6
sin 3�1;2 =

�

4M�
i

(4.9)

The above equation can be easily solved by iterative methods. Utilizing

the intersection angle values, the reference-output voltage relationship can be

computed by the following formula established by the Fourier analysis of the

modulation wave:

Mi = (
2

�
)M�

i (
�

2
+ �1 � �2 +

5

12
(sin 2�2 � sin 2�1) +
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1

24
(sin 4�2 � sin 4�1)) + cos�1 � cos�2 (4.10)

The above formula is valid until the reference modulation index value of

M�
i = 3�

10
� 0:943 and then region II begins. While in region II, only one inter-

section point exists and can be calculated from (4.9). Finally, the modulation

index can be calculated from the Fourier analysis derived formula as follows.

Mi = (
2

�
)M�

i (�1 �
5

12
sin 2�1 �

1

24
sin 4�1) + cos�1 (4.11)

Although the above formulas are dependent on the intersection angles and

di�cult to completely write in full closed form, they can be easily evaluated

by simple numerical software packages. Once the modulation index values are

calculated, the gain can be easily computed from (4.1).

4.2.4 THIPWM1/4

The zero sequence signal of THIPWM1/4 can be algebraically de�ned as v0 =

1
4
V1m sin(3wet) [32]. THIPWM1/4 looses linearity atM�

i = 3
p
3

7
p
7
� � 0:885 and its

overmodulation gain characteristic can be evaluated following the same algebraic

steps described in the THIPWM1/6 case.
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Similar to the THIPWM1/6 case, in region I, the modulator waveform in-

tersects with the saturation line twice per quarter-fundamental cycle. The in-

tersection angles are calculated from the following transcendental equation.

sin�1;2 +
1

4
sin 3�1;2 =

�

4M�
i

(4.12)

Similar to the THIPWM1/6 case, the above equation can be easily solved by

iterative methods. Utilizing the intersection angle values, the reference-output

voltage relationship can be computed by the following formula established by

the Fourier analysis of the modulation wave:

Mi = (
2

�
)M�

i (
�

2
+ �1 � �2 +

3

8
(sin 2�2 � sin 2�1) +

1

8
(sin 4�2 � sin 4�1)) + cos�1 � cos�2 (4.13)

The above formula is valid until the reference modulation index value of

M�
i = �

3
� 1:0472 and then region II begins. While in region II, only one inter-

section point exists and can be calculated from (4.12). Finally, the modulation

index can be calculated from the Fourier analysis derived formula as follows.

Mi = (
2

�
)M�

i (�1 �
3

8
sin 2�1 �

1

8
sin 4�1) + cos�1 (4.14)
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The above formulas can be computed with numerical software in a simi-

lar manner to the THIPWM1/6 case. Once the modulation index values are

calculated, the gain can be easily computed from (4.1).

4.2.5 DPWM1

As shown in Fig. 4.6, once in the overmodulation range, the saturated seg-

ments of DPWM1 increase beyond the 60� span of the linear modulation range,

and the modulation wave is upward shifted by an amount dependent on the

modulation index value. As shown in Fig. 4.6, the quarterwave consists of the

sinusoidal portion, and beyond the point of saturation, which is indicated as

�s, the reference voltage waveform consists of the constant voltage portion with

the value of Vdc
2
. The fundamental component voltage formula is therefore in

the following.

V1m =
4

�
(
Z �s

0
(V �

m(sin � � sin (� � 2�

3
))� Vdc

2
) sin �d� +

Z �

2

�s

Vdc

2
sin �d�) (4.15)

Fourier analysis of the saturated wave yields the following modulation index

and voltage gain relations.

Mi = �1 + (

p
3

�
� 1

2
)M�

i + (
�

4
p
3
)
1

M�
i

+ (
3

�
)M�

i arcsin (
�

2
p
3M�

i

) +

(

p
3

2
)

s
1� (

�

2
p
3M�

i

)2 (4.16)
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Figure 4.6: DPWM1 method overmodulation waveforms.

G =
�1
M�

i

+ (

p
3

�
� 1

2
) + (

�

4
p
3
)

1

M�2
i

+ (
3

�
) arcsin (

�

2
p
3M�

i

) +

(

p
3

2M�
i

)

s
1 � (

�

2
p
3M�

i

)2 (4.17)

4.2.6 DPWM2 and DPWM0

The DPWM2 modulation wave is not quarter-wave symmetric, hence the over-

modulation voltage gain equations are complex compared to the previous cases.

As shown in Fig. 4.7, the overmodulation region is divided into two sub-

regions. In the �rst subregion, as shown in Fig. 4.7 (a), the modulation wave

has four saturated segments per fundamental cycle. Employing Fourier analysis

and utilizing the intermediate variables  , a1, and b1, the voltage relations in

the �rst region can be calculated from the following equations.
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 = ��
3
+ arcsin (

�

2
p
3M�

i

) (4.18)

a1 =
M�

i

4
�
p
3

2
sin ( � �

6
) +

3 

2�
M�

i �
3

4�
M�

i cos (2 +
�

6
) (4.19)

b1 = �
1

2
cos ( +

�

3
) +

p
3

4�
M�

i (
�

3
� 2 � sin (2 � �

3
)) (4.20)

Mi =
q
a21 + b21 (4.21)

The second subregion begins at M�
i = �

3
. Shown in Fig. 4.7 (b) the modu-

lation wave heavily saturates and on each side two saturated segments merge,

leading to only two saturated segments per cycle. Introducing the variable �,

the coe�cients a1, and b1 can be calculated as follows.

� =
2�

3
� arcsin (

�

2
p
3M�

i

) (4.22)

a1 =
sin�

2
+ (

1

2
�
p
3

8�
� 3

4�
�)M�

i �
p
3

4�
M�

i cos (2��
2�

3
) (4.23)

b1 = �
cos�

2
+

p
3

2�
M�

i (

p
3

4
� 1

2
sin (2�� 2�

3
) +

�

3
� �

2
) (4.24)
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Figure 4.7: DPWM2 overmodulation waveforms. (a): Region I, (b): Region II.
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Once the above coe�cients are known, the reference-output voltage relations

can be calculated from (4.21) and the voltage gain can be calculated in both

subregions from the de�nition of (4.1).

The modulation waves of DPWM2 and DPWM0 are only di�erent by the

position of the unmodulated segment. Therefore, Fourier analysis of both yield

the same fundamental component gain results. For this reason the derivation

for DPWM0 will not be pursued and the above results can be readily utilized

when necessary.

4.2.7 DPWM3

As shown in Fig. 4.8, the overmodulation region of DPWM3 is divided into three

subregions. The �rst subregion covers the reference modulation index range of

�

2
p
3
�M�

i � �

3
. In this region the modulation index relations are calculated in

the following.
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Mi = 1 + (1�
p
3

�
)M�

i �
�

4
p
3M�

i

�

3

�
M�

i arccos (
�

2
p
3M�

i

) +

p
3

2

s
1� (

�

2
p
3M�

i

)
2

(4.25)

The second subregion covers the range of �

3
�M�

i � �p
3
and the modulation

index formula of this region is as follows.

Mi = 1 + (
1

2
�
p
3

�
)M�

i (4.26)

The third and last region covers the range of �p
3
� M�

i � 1 and in this

region the following modulation index relations are valid.

Mi = �1 + 2cos � + (
1

2
� 3�

�
�
p
3

2�
)M�

i +

p
3

�
M�

i sin (2� �
�

6
) (4.27)

� =
�

6
� arcsin (

�

2
p
3M�

i

) (4.28)

Evaluating the above formula for M�
i ! 1 the modulation index of Mi =

p
3 � 1 � 0:732 is found. This result indicates DPWM3 has an unusual over-

modulation behavior. In the third region, as the reference modulation index

increases, the fundamental component signal magnitude decreases. Unlike all

the other modulators, which experience saturation, this modulator generates a

reduced output voltage and exacerbates the drive performance.
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Figure 4.8: DPWM3 method overmodulation waveforms for three M�
i values.

(a): Region I (M�
i = 1:0), (b): Region II (M�

i = 1:5), (c): Region III (M�
i = 3:0).
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As illustrated in Fig. 4.8(c), in the third overmodulation region, this mod-

ulator generates voltage pulses with opposite polarity to the fundamental com-

ponent, therefore the output voltage becomes smaller. As the reference signal

becomes large, the opposite polarity pulses become rectangles with 30� width.

4.2.8 GDPWM

Since GDPWM covers the DPWM0, DPWM1 and DPWM2 modulators, its

fundamental component overmodulation gain model has been developed in the

previous subsections at least for these operating points. The following sec-

tions will illustrate except for these operating points, the remaining  range
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of GDPWM does not have practical importance from the overmodulation per-

spective. Since a generalized fundamental component gain formula of GDPWM

would be substantially complex and it has no practical value, its derivation will

not be pursued in this work.

4.2.9 DPWMMAX and DPWMMIN

Since these modulators have a zero sequence signal with DC bias, in the over-

modulation region, the output voltage contains a DC average voltage output.

Therefore, the overmodulation region operation of these modulators is pro-

hibitive and their waveform analysis will not be pursued in this work.

4.3 On The Gain Formula Accuracy

Obvious from the above analyses, the gain function calculation involves con-

tinuous or piece-wise continuous modulation signals, as opposed to the actual

PWM inverter output voltages consisting of high frequency rectangular pulses.

Theoretically, a modulator could match the reference volt-seconds within ev-

ery carrier cycle and as a result the per-carrier-cycle-average-voltage could ap-

proach the theoretical modulation signals. Therefore, high fundamental com-

ponent voltage gain accuracy is expected. However, at least in the regularly

sampled asynchronous PWM, the discretized modulation signal may yield a

slightly di�erent volt-seconds than the original signal due to �nite sampling
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rate. Therefore, the theoretical gain formula can yield a slightly di�erent fun-

damental component than the actual.

To test the accuracy of the Fourier analysis based fundamental component

gain calculation method, the SVPWM method (the choice of SVPWM modula-

tor was arbitrary) gain calculation was compared with simulation data. Employ-

ing the regularly sampled SVPWM modulator, an ideal PWM-VSI simulation

was utilized to generate the pulsating inverter output voltage data. Evaluating

the simulation data with a Fast Fourier Transformation (FFT) program, the fun-

damental component signal could be computed with high accuracy (213 = 8192

data points). The fundamental frequency was selected as 50 Hz and the car-

rier frequency was varied from 1 to 5 kHz to investigate the in
uence of the

sampling rate. The results are illustrated in Table 4.1 in terms of modulation

indices. Based on the table data, the relative error was calculated for all the

data and it was found to be less than 0.5 % and higher carrier frequencies

implied signi�cantly better accuracy.

The above results indicate for fs
fe
> 20, the relative gain error is less than

0.5 % and the error signi�cantly decreases with increasing fs
fe
. Since the widely

utilized PWM-VSI drives employing Insulated Gate Bipolar Transistor (IGBT)

devices typically have high fs
fe

values, the model successfully represents most

inverter drives.
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Table 4.1: SVPWM theoretical and simulation based Mi = f(M�
i ) data

M�
i M t

i Mi(5kHz) Mi(2kHz) Mi(1kHz)
0.907 0.907 0.907 0.907 0.907
0.950 0.934 0.934 0.933 0.933
1.0 0.949 0.949 0.948 0.946
2.0 0.989 0.988 0.987 0.984
4.0 0.997 0.997 0.996 0.993

4.4 Voltage Gain Comparisons

In this section the voltage gain characteristics of all the discussed modulators are

comparatively evaluated. The comparisons are provided in terms of the voltage

gain (G = f(Mi)) and modulation index (Mi = f(M�
i )) relations. Utilizing the

gain functions derived in the previous section, the gain characteristics of the

modern modulators are computed and illustrated in Fig. 4.9. The improvement

in the linearity range of all the zero sequence injection methods compared to

SPWM is obvious from the �gure. More importantly, the graph reveals the

superior gain characteristic of Depenbrock's DPWM1 method; the gain of this

modulator drops at a signi�cantly smaller rate than all the other modulators,

and the minimum value, which occurs at the six-step operating point is
p
3
�
�

0:551. All the other modulators have a rapid drop in gain and eventually the gain

becomes practically zero at the six-step operating point. With the exception of

DPWM3, the similarity of their gain characteristics with respect to each other

is also obvious from the �gure.
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With its most unusual and poorest gain characteristic, the DPWM3 method

would perhaps be mainly of academic interest. Unlike all the other modulators,

which experience saturation, this modulator generates a substantially reduced

output voltage and exacerbates the drive performance. Since in the overmod-

ulation region the voltage pulse pattern of this modulator does contradict the

pulse polarity consistency principle, its performance is unacceptable. In partic-

ular, its application to closed loop speed regulated voltage feedforward drives

is prohibitive. Therefore, no further investigation on this modulator has been

attempted.

Shown in Fig. 4.10 and illustrated in terms of the modulation indices, the

input-output voltage relations of the important modulators provide more spe-

ci�c information. Except for DPWM1, all the modulators require large reference

signals in order to penetrate the overmodulation region. In particular, DPWM1

requires a reference signal with a magnitude ofM�
i = �p

3
� 1:81, while the other

modulators require signals with very large magnitudes (M�
i � 5:::20). This re-

sult is extremely important from an implementation perspective: the smaller

the gain range, the better the accuracy of the modulation signal and the smaller

word length requirement of a signal processor(or the signal range in an analog

implementation). Therefore, DPWM1 utilizes the signal range of a processor

with high resolution and abrupt pulse dropping and the consequent overcurrent

fault condition is avoided.

The unusual gain characteristic of DPWM1 is not di�cult to explain. In the
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overmodulation range, the zero sequence signal of this modulator is e�ectively

a square-wave function with an increasing magnitude as the six-step operating

point is approached. Therefore, in this method, the modulation wave is verti-

cally and horizontally forced to approach the six-step mode, while the other zero

sequence injection methods force the modulation wave to expand mainly hor-

izontally until the six-step mode is generated. This characteristic of DPWM1

can be clearly observed in Fig. 4.11 where DPWM1 and SVPWM modula-

tion waveforms are compared for a set of reference modulation index values.

It is apparent that as the reference modulation index increases, the SVPWM

modulation wave saturates heavily, while the DPWM1 modulation wave easily

approaches the square-wave.
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4.5 In
uence Of Blanking Time And Mini-

mum Pulse Width On Modulator Gain

The inverter voltage linearity section of the previous chapter provided a short

introduction to the in
uence of the inverter non-ideal characteristics (such as

the minimum pulse width and the inverter blanking time) on the modulator

voltage gain behavior. This section provides a more detailed investigation of

these characteristics.

Inverter blanking time is the time interval that both switches of an inverter

leg are open following a change in the gate logic reference signal value. It is pro-

vided for protection against DC bus short circuit. As shown in Fig. 4.12(b), the

blanking time controller delays the reference gate signals by the blanking time

td, and results in loss of gate signal symmetry (increases the uncharacteristic
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Figure 4.12: Regular sampling PWM reference and gate signals. (a): The
reference gate signal at high modulation level, (b): No compensation results in
asymmetric gate signal ( for ias > 0), (c): Signal after exact compensation.

harmonics), and also a reduction in the output voltage value. Typically, a gate

pulse correction (compensation) algorithm is employed in order to restore the

symmetry and volt-second balance [117]. As shown in Fig. 4.12 (c), in the exact

compensation method, if the polarity of the phase current of the corresponding

inverter leg is positive (negative), the reference gate signal on the triangle side

with negative(positive) slope is advanced (delayed) by the blanking time leading

to the correct output voltage pulse.

When a modulator operates near its theoretical linearity limits, as shown

in Fig. 4.12 (a), narrow gate pulses are generated. When the width of such

pulses becomes smaller than 2td (td is the blanking time), the compensation

algorithm fails to correct the pulses properly. In Fig. 4.12 (c), this condition

corresponds to x � 0 and correct compensation requires interference with the
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modulation signal in the previous half carrier cycle. Since in the conventional

digital PWM methods the reference modulation signal is generated only at the

positive and/or negative peak points of the triangular carrier wave (regular

sampling), correct compensation of such a narrow pulse is not possible. Hence,

voltage gain reduction occurs before the theoretical linearity limit. The lowest

modulation level at which this problem occurs can be easily calculated. When

the modulation signal v� is positive, the narrow pulse occurs when in the upper

inverter leg switch is the o� state with a duration t�n calculated as follows.

t�n = (
Ts

2
)(1� v�

Vdc
2

) (4.29)

Substituting the modulation wave peak value of the modulator under inves-

tigation in the above formula and selecting the minimum pulse width equal to

2td, the practical maximum linear modulation index Mp
Lmax can be found as

follows.

M
p
Lmax = (1 � km

2td
Ts

) �M t
Lmax (4.30)

In the above formula,M t
Lmax is the theoretical linearity limit of the modula-

tor. The km coe�cient distinguishes the discontinuous PWM methods from the

continuous wave modulation methods. Its value is km = 1 for the DPWM meth-

ods and km = 2 for the modulators with continuous modulation wave. Note the

above equation and (3.54) are derived with the same approach and replacing
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2td with tMPW yields equal results. As discussed in the previous chapter, the

small km coe�cient of the DPWM methods indicates that DPWM methods

have wider voltage linearity range than SPWM, SVPWM, and other CPWM

methods. This result is a consequence of the di�erent distribution of the in-

verter zero states in the two di�erent modulation groups. The discontinuous

PWM methods generate only one inverter zero state per carrier cycle ( t0: all

the lower inverter switches are in the on-state or t7: all the upper switches are in

the on-state), while the continuous PWM methods generate two zero states (for

SVPWM t0 = t7). Since the total zero state time is not a function of the zero

sequence signal but the line-line reference voltage, for the same line-line output

voltage and carrier frequency value, the gate pulses of the DPWM methods

are wider than the gate pulses of the CPWM methods. Therefore, the narrow

pulse problem occurs at a higher modulation index with DPWM methods than

CPWM methods.

Notice that in both continuous and discontinuous PWM cases, the linearity

boundaries depend on the ratio of the blanking time to the carrier cycle. Since

the increasing carrier cycle practically implies increasing inverter power and

increasing blanking time, the ratio is at least a few percent in most PWM-VSI

drives. As a result, in most applications the linearity range of a modulator is

reduced by a substantial amount. In either modulation method, once beyond

the boundary of linear modulation range, the output voltage is reduced by an

amount which depends on the overlap time \x" shown in Fig. 4.12 (c). As

a result, the gain begins to decrease at a lower modulation index than the
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theoretical linearity limit and decreases more rapidly than the theoretical gain

characteristic. Compared to the modulator theoretical gain reduction, the gain

reduction of the DPWM methods due to the blanking time is fairly small, and

can be ignored for inverters with a few kHz switching frequency and blanking

time less than a few microseconds. In the Gate Turn O� (GTO) switching

device based PWM-VSI applications, the e�ect is more emphasized due to the

long blanking time.

In certain applications, the narrow voltage pulses which occur at high mod-

ulation levels may damage the drive or load. In such cases the blanking time

correction algorithm yields to a Minimum Pulse Width (MPW) control algo-

rithm. For example, the turn-on and/or turn-o� speed capabilities of a GTO

may not be su�cient to generate such narrow pulses. In order to avoid commu-

tation failure of GTO based drives, such narrow pulses are either eliminated or

�xed at an acceptable level.

Narrow voltage pulses can also cause overvoltage related motor insulation

failure. State of the art PWM-VSI drives utilize the modern third generation

IGBT devices with very small turn-on and turn-o� times. Feeding motors with

long cables from such PWM-VSI drives, signi�cant overvoltages are generated

across the motor terminals due to voltage re
ection. As a result, the motor

terminals experience excessive overvoltages contributing to insulation failure.

When such PWM-VSI drives operate at high modulation levels and narrow
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pulses are generated, the voltage re
ection problem is exacerbated: overvolt-

ages in excess of twice the DC bus value can appear across the terminals of a

motor connected to a drive through as short a cable as 30 m [92]. Therefore,

narrow voltage pulses are problematic in many drives. These problems can be

eliminated by either employing passive solutions such as inserting reactors be-

tween the drive and the motor, or active solutions such as MPW control which

only requires modi�cation to the PWM algorithm of a drive. The active solution

is more economic, compact and maintenance free.

When employed, MPW control algorithms a�ect the modulator voltage gain

and reduce the linear modulation range noticeably. The Pulse Elimination

Method (PEM) omits pulses narrower than a desirable limit and increases the

modulator gain. The Pulse Limiting Method (PLM) limits the width of the

pulses to the minimum allowable pulse width limit and reduces the gain. How-

ever, as the modulation index increases, the modulator theoretical gain char-

acteristics dominate and in both cases the gain decreases rapidly, therefore the

gain curves follow the gain curves of Fig. 4.9 closely. In either method, the

linearity limit of a modulator becomes smaller than the theoretical limits. In a

proper design, the MPW pulses are wider than 2td; therefore, the blanking time

controller has no in
uence on the modulator linearity in this case. When MPW

is applied, the practical voltage linearity limit of an inverter can be found from

(3.54). Since in this algorithm both sides of the triangle are a�ected while in

the blanking time compensation case only one side of the triangle has incorrect
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gate signal, the e�ect of MPW control has more in
uence on the gain character-

istic of a PWM-VSI. In particular, in GTO based high power PWM-VSIs which

employ GTO's with large MPW values (tMPW � 200�s), MPW control starts

at very low modulation depths, and the nonlinear gain characteristics dominate

the drive behavior at a low modulation depth. Although less signi�cant, the

e�ect can not be underemphasized in the modern IGBT device based PWM-VSI

drives. In order to avoid the above mentioned overvoltage problem, MPW times

as large as 8-16 �s are required [92]. Since the carrier frequency is at least a

few kilohertz, the in
uence of MPW control on the gain characteristics of such

drives is signi�cant.

The MPW controlled modulator gain formulas can be closed form calculated

by modifying the theoretical modulator gain formulas. In a PEM controlled

inverter, the output modulation index is di�erent from the modulation index

output by an amount the additional volt-seconds determine. Calculating the

additional components by the Fourier analysis, the modi�ed modulation index

relations can be easily obtained. In the following the modi�ed modulation index

formulas of SPWM, SVPWM, and DPWM1 are summarized.

4.5.1 SPWM

When employing PEM, the modulation index relations of the SPWM method

become as follows.
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M
0

iSPWM =Mi + cos�0s � cos�1s �
2M�

i

�
[�1s � �0s �

1

2
(sin (2�1s)� sin (2�0s))] (4.31)

The �0s and �1s angles correspond to points PEM begins and ends. These

angles are calculated as follows.

�0s = arcsin (
�

4M�
i

(1 � 2tMPW

Ts
)) (4.32)

�1s = arcsin (
�

4M�
i

) (4.33)

4.5.2 SVPWM

The SVPWMmodulation index relations with PEM control are calculated in the

following for three operating regions. In the �rst region, for �

2
p
3
(1 � 2 tMPW

Ts
) �

M�
i � �

2
p
3
the following relations yield.

M
0

iSV PWM =M�
i + cos�1sv1 � cos (

2�

3
� �1sv1)�

p
3M�

i

2�
[
p
3(
2�

3
� 2�1sv1) + sin (2�1sv1 +

�

6
) + cos (2�1sv1)] (4.34)

�1sv1 = �
�

6
+ arcsin (

�

2
p
3M�

i

(1 � 2tMPW

Ts
)) (4.35)
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The second region involves a reference modulation index range of �

2
p
3
�

M�
i � �

3
and in this region the modulation index relations are as follows.

M
0

iSV PWM =Mi + cos�1sv2 + cos�3sv2 � cos�2sv2 � cos�4sv2 +

3M�
i

2�
(�1sv2 + �3sv2 � cos�2sv2 � cos�4sv2) +

p
3M�

i

2�
[sin (2�2sv2 +

�

6
) +

sin (2�4sv2 +
�

6
)� sin (2�1sv2 +

�

6
)� sin (2�m3sv2 +

�

6
)] (4.36)

�1sv2 = �
�

6
+ arcsin (

�

2
p
3M�

i

(1 � 2tMPW

Ts
)) (4.37)

�2sv2 = ��
6
+ arcsin (

�

2
p
3M�

i

) (4.38)

�3sv2 =
2�

3
� �2sv2 (4.39)

�4sv2 =
2�

3
� �1sv2 (4.40)

The third region involves the remainder of the reference modulation index

range (M�
i � �

3
) and in this region the modulation index relations are as follows.

M
0

iSV PWM1 =Mi + cos�0sv3 � cos�1sv3 � 3M�
i

�
[�1sv3

��0sv3 � 1

2
(sin (2�1sv3)� sin (2�0sv3))] (4.41)
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�0sv3 = arcsin (
�

6M�
i

(1 � 2tMPW

Ts
)) (4.42)

�1sv3 = arcsin (
�

6M�
i

) (4.43)

4.5.3 DPWM1

When employing PEM, the modulation index relations of the DPWM1 method

become as follows.

M
0

iDPWM1 =Mi + 2(cos�d0 � cos�d1�)�M�
i

3

�
(�d1 � �d0) +

M�
i

p
3

�
(sin (2�d1 +

�

6
)� sin (2�d0 +

�

6
)) (4.44)

In the above equation, M
0

i is the output voltage modulation index and Mi

is the theoretical modulation index value without MPW control which is given

by (4.16). The intermediate variables �d0 and �d1 are calculated as follows.

�d0 = �
�

6
+ arcsin (

�

2
p
3M�

i

(1 � tMPW

Ts
)) (4.45)

�d1 = �
�

6
+ arcsin (

�

2
p
3M�

i

) (4.46)
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4.5.4 Evaluation and Comparison

Figure 4.13 shows the closed form calculated gain characteristics of PEM con-

trolled PWM-VSI for both SVPWM and DPWM1. Both modulators employ

fs = 5kHz and tMPW = 12�s. As the �gure illustrates, the in
uence of the

MPW algorithm has a non-negligible e�ect on the voltage gain of SVPWM.

The nonlinearity is noticeably smaller in the DPWM1 case. On the same �g-

ure, the blanking time dependent gain characteristic of DPWM1 is shown for

td = 4�s. Notice the blanking time has very little in
uence on the linearity com-

pared to MPW. The gain curves of the PEM controlled drive clearly indicate

the linearity range of DPWM methods is signi�cantly wider than SVPWM and

in the overmodulation region DPWM1 is the only modulator that maintains a

high gain. Therefore, DPWM1 can be most bene�cial to high power PWM-VSI

drives and all the PWM-VSI drives with large tMPW

Ts
ratio while operating in

the high modulation range.

4.6 Voltage Gain Linearization

As illustrated in Fig. 4.14 (a) in block diagram form, in the overmodulation

region the VSI output voltage is di�erent from the reference voltage due to gain

nonlinearity. PWM-VSI drives which employ PLM and drives which do not em-

ploy any MPW control algorithm always experience gain reduction, while those

employing PEM experience gain increase in the entrance of the overmodulation
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region and gain reduction as the overmodulation region is further penetrated.

On the other hand, it is important to program the reference fundamental com-

ponent voltage value correctly so that the drive performance does not degrade.

For example, in AC motor drive applications the stator 
ux value (or equiva-

lently the V

f
value) must be maintained at a proper level to obtain high e�-

ciency. Therefore, fundamental component voltage linearity must be retained in

the overmodulation range also. Since the discussed modulation methods have

nonlinear gain characteristics, to retain voltage linearity a gain compensation

technique must be employed. Gain compensation techniques are based on either

adding extra signals such as square-waves to the reference modulation waves, or

by increasing or decreasing the fundamental component magnitude of the ref-

erence modulation waves [93]. As shown in Fig. 4.14 (b), in the latter approach

the reference modulation wave fundamental component signal is pre-multiplied

with the inverse gain function such that the nonlinearity is canceled. The for-

mer approach may alter the modulator harmonic characteristics while the latter

does not. In this work, the inverse gain method will be investigated.
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In both gain linearization methods, calculating the gain compensation func-

tion is very di�cult. The di�culty of describing the gain functions in closed

form equations has been overcome in the early stages of this paper. However,

closed form calculation of the inverse gain function is very di�cult. Further-

more, on-line computation of such complex gain compensation signals with the

state of the art DSP or �P devices is prohibitive. Instead, the gain function and

its inverse can be numerically computed o�-line and the data can be utilized to

approximate the gain compensation function by a look-up table and/or a simple

curve �tting method.

Inverse gain compensation based gain linearization of the SPWM method

which employs a table look-up approach was previously reported, and the re-

quirement for a large table size and an e�cient table search algorithm were

indicated [93]. The zero sequence injection PWM methods which are discussed

in this paper have smaller gain range than SPWM, therefore the memory re-

quirements are less demanding. However, of all the discussed methods, DPWM1

provides an exceptional implementation advantage due to its signi�cantly small

gain reduction. The gain compensation signal (inverse gain function magni-

tude) of DPWM1 is less than 2 units while the other modulators require large

signals ranging from 5 to 20 units. Therefore, when employing DPWM1 in a

�xed-point digital platform, the word length of the �P or DSP can be more

e�ciently utilized. The other methods require a signi�cant amount of data

shifting to process the large inverse gain values such that over
ow does not
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occur and this results in poor modulation signal resolution and increased com-

putation time. The inverse gain function data of DPWM1 can be easily �t into

several �rst order polynomials leading to a smaller memory size requirement

and improved accuracy. Near the six-step operating point (Mi � 0:99) the gain

inverse coe�cients increase due to the rapid gain reduction and the inverse gain

function can be better modeled by several data entries.

Employing the analytical gain function of DPWM1 and accounting for PEM

based nonlinearity, the inverse gain function data can be accurately and easily

computed from (4.44). Utilizing this data to obtain a simple hybrid model

consisting of several piece-wise �rst order polynomial functions and several data

entries is a straightforward task.

Compared to the direct digital PWM implementation, the triangle intersec-

tion technique requires simpler overmodulation algorithms. In the direct digital

method, the overmodulation condition is detected only after computing a zero

state time length with negative sign. Therefore, a back step for correcting the

sign is inevitable, and additional algorithms (often complex) must be employed

to compensate for the gain loss [75]. Therefore, DPWM1 triangle intersection

method requires the simplest overmodulation algorithm and has superior per-

formance when compared to all the other PWM methods reported.
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4.7 Waveform Quality

As discussed in the previous chapter in detail, the linear modulation range

harmonics of carrier based PWM methods (characteristic harmonics) are con-

centrated at the carrier frequency, its multiples and their sidebands. These

harmonics could be successfully modeled with the HDF function. The analysis

and comparison aided understanding the characteristics of all the modern mod-

ulators. It was illustrated that CPWM methods have superior waveform quality

in the lower linear modulation index region while the DPWM methods would

perform better in the higher linear modulation index region. Therefore, it was

concluded a modulation algorithm that selects SPWM or SVPWM in the lower

linear modulation region and a suitable DPWM method in the remainder of the

linear modulation region would yield an optimal drive performance. However,

the overmodulation region waveform quality was not considered. In this section

the overmodulation region waveform quality will be investigated.

In the overmodulation region, as the unmodulated portions of the modula-

tion waves increase the characteristic harmonics decrease. Therefore, the high

frequency harmonic content becomes less signi�cant with increasing modulation

index and eventually becomes zero at the six-step operating point. However,

large amount of sub-carrier frequency harmonics (5th, 7th, etc.) are generated

and as the six-step mode is approached these harmonics become increasingly

dominant in determining the waveform quality. Since the overmodulation region

implies loss of volt-second balance, in the carrier cycles that saturation occurs
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the HDF formula is not applicable. Therefore, it is di�cult to analytically

model the overmodulation region waveform characteristics of a modulator and

a numerical approach is more suitable. De�ned in the following, the inverter

output line to line voltage Weighted Total Harmonic Distortion (WTHD) factor

is an appropriate measure in determining the modulator waveform quality both

in the linear and overmodulation range.

WTHD = 100 �
qPn

i=2(
VLLi
i
)2

VLL1
(4.47)

In most AC motor drive and utility interface applications, the WTHD func-

tion is more meaningful than the conventional voltage THD de�nition in which

the 1
i
weight factor is absent in the formula because the WTHD function ac-

counts for the low pass �lter characteristic of the load inductance automatically.

Thus, a better measure for the current harmonic distortion. The WTHD func-

tion is carrier frequency dependent and the VLLi terms are typically calculated

by evaluating the PWM-VSI line to line output voltage data for one fundamen-

tal cycle (obtained by simulation) through FFT analysis.

In this study, line to line voltage WTHD curves for SVPWM and DPWM1

are calculated and compared. The inverter line to line voltage data of a PWM-

VSI drive which employs the once per carrier regular sampling technique is

generated by means of computer simulations. The simulation assumes a fun-

damental frequency of fe = 60 Hz. The carrier frequency fs is 5 kHz in the

DPWM1 case and 3.33 kHz in the SVPWM case. This implies equal inverter
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average switching frequency in both methods. In order to illustrate the carrier

frequency dependency of the WTHD function, the SVPWM case is evaluated for

5 kHz also. The harmonic voltages, accounting for all the dominant harmonics

(up to 3fs), were calculated by evaluating the 8192 data points by means of an

FFT algorithm of the MATLAB [1] numerical computation software package.

The WTHD curves in Fig. 4.15 (a) illustrate the advantageous waveform

characteristics of the DPWM1 method at high modulation including the over-

modulation range. Under the equal inverter average switching frequency cri-

teria, the harmonic distortion of DPWM1 is less than the SVPWM methods

from Mi � 0:6 to Mi � 0:95 where both curves merge. Under an equal carrier

frequency criteria, which implies a 50 % increase in the average switching fre-

quency in the SVPWM case, the waveform quality advantage of SVPWM over

DPWM1 is lost near Mi � 0:90.

Although they have di�erent shapes and de�nitions, the HDF and WTHD

performance indices yield similar conclusions in the linear modulation region.

Since in the lower modulation index region the line to line voltage pulses be-

come narrow, the 8192 data FFT analysis yields a result with limited accuracy

while the HDF approach is exact and yields a higher accuracy waveform quality

calculation. Also it should be kept in mind these approaches are di�cult to

mathematically relate and they should be independently utilized as required by

the application.

The blanking time and minimum-pulse-width control algorithm dependent



187

inverter nonlinearities can cause signi�cant harmonic distortion increase which

is modulator dependent. Figure 4.15 (b) illustrates the increase in the harmonic

distortion when a 12�sMPW control algorithm (PEM) is employed in the above

system. Although the harmonic distortion increases in all the cases, the rela-

tive increase in the DPWM1 case is signi�cantly smaller than the SVPWMs.

The data clearly indicates that the harmonic distortion of the SVPWM method

signi�cantly increases and the increase in the switching frequency worsens the

harmonic distortion. Therefore, accounting for the MPW nonlinearity, the su-

periority of DPWM1 over SVPWM begins at a signi�cantly smaller modulation

index value than the ideal case. Figure 4.15 (b) clearly indicates that if the

carrier frequency is kept constant and the modulation method is switched from

SVPWM to DPWM1 beyondMi � 0:8, no degradation of waveform quality will

be obtained relative to the SVPWM case. Furthermore, in the DPWM1 case

the switching losses are greatly reduced.

Figure 4.15 also indicates the overmodulation region waveform characteris-

tics of DPWM1 are superior to SVPWM until the point where the 5th, 7th,

etc. sub-carrier frequency harmonics totally dominate and both WTHD curves

merge (Mi � 0:95). Although in the low end of the overmodulation range the

WTHD factor is strongly dependent on the carrier frequency, inverter nonlin-

earities and the modulation method, in the high end it is dominated by the

sub-carrier frequency harmonics and it is weakly dependent on the carrier fre-

quency and the modulation method. Therefore, a detailed investigation of the

sub-carrier frequency harmonic characteristics is required.



188

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.75 0.8 0.85 0.9 0.95
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.15: WTHD characteristics of SVPWM and DPWM1. (a): Ideal in-
verter model case. (b): Magni�ed view with MPW (solid) and without MPW
(dashed) control algorithm.

Mi Mi

W
T
H
D

(%)

W
T
H
D

(%)

1 : DPWM1(5kHz)

2 : SV PWM(3:3kHz)

3 : SV PWM(5kHz)

1

2

3

1

3

2

(a) (b)



189

4.7.1 Subcarrier Frequency Harmonic Content

Since each modulator has a unique modulation wave and in the overmodulation

region unique modulation signals are generated, the sub-carrier frequency har-

monic content of each modulator is unique. Since the modulation wave shape

is independent of the carrier frequency, these harmonics are also independent of

the carrier frequency. Although it is theoretically possible to closed form cal-

culate these harmonics for each modulator, the process would be substantially

di�cult, laborious, and perhaps the detail unnecessary. Therefore, a numeri-

cal approach is more suitable to obtain the subharmonic data which is mainly

required for the purpose of comparison between modulators.

For isolated neutral loads, the inverter output voltage subcarrier frequency

harmonics which a�ect the drive performance are the non-triplen odd harmon-

ics, i.e. 5th, 7th, etc. Since electricmachines and utility interfaces with inductive

interface �lters have low pass �lter characteristics, the high frequency inverter

output voltage harmonics do not generate large currents, while small magni-

tudes of low frequence harmonics can generate large harmonic currents. As a

result, the low frequency harmonics in
uence the drive characteristics at high

modulation index values. They cause torque ripple and copper losses. There-

fore, only the dominant low frequency harmonics need be considered.

In this study the overmodulation region inverter output voltage subcarrier

frequency dominant harmonics are computed through FFT analysis of the mod-

ulation waves for various modulation index values. The 5th, 7th, 11th, 13th,
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17th, 19th, 23th, and 25th harmonics are accounted for in this analysis. For each

modulator and modulation index value, a full modulation wave fundamental cy-

cle has been computed employing 2048 data points. Through FFT analysis of

this data the harmonic components were calculated. Evaluating the individual

harmonics, and excluding the triplen harmonics, the Total Harmonic Distor-

tion (THD) (in (4.47), by replacing the 1
i
term with unity, the THD formula

yields) was computed and stored for each modulation index and each modula-

tor. For each modulator, the overmodulation range data has been evaluated for

20 di�erent modulation index values. The results provide accurate estimates of

the subcarrier frequency harmonic content for systems with carrier frequency

to fundamental frequency ratios of approximately 20 or higher. For low ratios,

the results are rough approximates. As illustrated in the voltage gain accuracy

study, this limitation is due to the fact the actual discretized modulation wave

may be slightly di�erent than the ideal modulation signal. Since the carrier

waves and switchings are not modeled, the data does not contain information

regarding the carrier frequency harmonics. In the higher end of the overmodu-

lation range, the in
uence of the high frequency harmonics on the total THD is

signi�cantly smaller than the low frequency harmonics, hence these terms can

be neglected.

The voltage sub-carrier frequency THD characteristics of SVPWM, SPWM,

THIPWM1/6, and DPWM1 have been calculated and shown in Fig. 4.16 in de-

tail. The �gure indicates that there is no signi�cant di�erence between the THD

of the zero sequence signal injection PWM methods considered. However, it is
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Figure 4.16: Ideal subcarrier frequency voltage THD of various modula-
tors in the overmodulation range. 1: SPWM, 2:DPWM1, 3: SVPWM and
THIPWM1/4.

visible from the curves that the SVPWM has slightly better THD characteristic.

The SPWM method harmonic content has an interesting THD characteristic.

As the modulator enters the overmodulation region the THD almost linearly

increases, and at about 0.91 modulation index it saturates and furthermore it

slightly decreases. As the modulation index further increases, the SPWM THD

curve joins the other curves inclining towards the six step value.

Assuming that the AC load harmonic model can be represented by the load

transient inductance, the current THD can be easily calculated from the voltage
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harmonic data (In = Vn
nweL�

). If harmonic currents are a cause of concern from

the e�ciency or torque ripple perspective, the allowed overmodulation range

of a drive may be limited to a modulation range in which the performance

is acceptable. The harmonic characteristics extracted in this section can be

utilized for such purposes.

Although the total voltage THD is very close in all the modulators discussed,

the individual harmonics of various modulators may di�er more noticeably. Fig-

ure 4.17, Figure 4.18, and Figure 4.19 show the modulation index dependency

of sub-carrier frequency voltage dominant harmonics of the SPWM, DPWM1,

and SVPWM. The data was calculated in terms of harmonic modulation index

variables for the sake of generality. The �gures indicate that the most dominant

harmonic is the �fth harmonic, and as the order increases the harmonic mag-

nitudes decrease. The dominant harmonics do not have linear gain relations

with the modulation index value, and as the modulation index increases, their

magnitudes increase very steeply, in particular near six step modulation. This

characteristic is common to all the modulators discussed. The six-step operating

mode harmonic content is well de�ned and these harmonics are the non-triplen

odd harmonics. Utilizing the Fourier analysis approach, the harmonic content

of the six-step voltage waveforms can be calculated as follows.

Vn =
2

n�
Vdc (4.48)

where
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Figure 4.17: Individual voltage harmonic content of SPWM in the overmodula-
tion range. The values are given in terms of the modulation index.

n = 6h � 1; h = 1; 2; 3; etc: (4.49)

4.7.2 Evaluation and Comparison

Inverter output voltage waveform quality in the lower end of the overmodulation

region is mainly determined by the carrier frequency harmonics, and a modu-

lator with less distortion would provide the best results. Therefore, selecting

a suitable DPWM method would yield a superior performance. In the higher

end of the overmodulation region, the sub-carrier frequency harmonics dominate

the performance. Although the sub-carrier frequency harmonic content of di�er-

ent modulators is di�erent, practically the voltage THD is not modulator type
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ulation range. The values are given in terms of the modulation index.
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dependent (except in comparison with SPWM which is considered a poor over-

modulation method). Therefore, the choice of modulator in this region could

be determined by other performance criteria such as voltage gain and switching

losses. The modulation index value that the dominance of the carrier frequency

harmonics ends and the sub-carrier frequency harmonics become dominant is

approximately 0.95.

Since the harmonic current is approximately proportional to the inverse of

the load transient impedance (at high frequencies mainly inductance), a load

with large transient inductance experience less current ripple in the high over-

modulation range than the low inductance loads. Therefore, it may be accept-

able for some applications to allow the drive to operate in the overmodulation

range, perhaps until 0.95 modulation index and even higher. Loads with large

transient inductance can easily suppress the harmonics generated in the low end

of the overmodulation range. In current ripple sensitive low inductance loads,

the operating region perhaps could be limited to this value or less such that the

overmodulation region drive performance does not signi�cantly degrade. Since

all modulators have essentially the same waveform quality beyond 0.95 modu-

lation index, in this region the modulator choice could involve optimization of

other performance indices such as the gain and switching losses.

In the previous chapter it was shown all DPWM methods have approxi-

mately equal HDF in the higher end of the linear modulation region. This

argument is also valid for the switching frequency harmonics of the modulation
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wave in the overmodulation region. Therefore, in the overmodulation region the

waveform quality of all the discussed DPWM methods is practically the same

as DPWM1 which has been investigated in this chapter. Since these results are

also applicable to GDPWM at any modulator phase angle, an alternative to

DPWM1 could be considered for switching loss reduction. However, transition

from one operating point to another in the overmodulation region may result in

substantial transients due to the di�erences in the voltage gain characteristics.

Therefore, due to its superior voltage gain characteristic, the choice of DPWM1

from the beginning of the overmodulation region until the six-step operating

mode is favorable. This result clearly indicates that for voltage feedforward

drives, DPWM1 provides optimal performance in the overmodulation region

from the global perspective of waveform distortion minimization, maximum

voltage gain, and switching losses, and minimum transients. The overmodula-

tion region experimental results of a voltage feedforward controlled drive are

provided next.

4.8 Experimental Results

In this section the experimental voltage gain characteristics of SPWM, SVPWM,

and DPWM1 are extracted and their waveform characteristics are illustrated.

For this purpose, an experimental system which consists of a PWM-VSI drive

and a 10 HP induction machine has been utilized. The inverter drive employs

triangle intersection technique based PWM and the carrier frequency is 5 kHz.



197

Vff
*

a Vff
* + b

Vff
**

N

D

Vdc

Vdc
*

V/f Curve
A/D

ω*
r

(a,b)

A/D

VSI

DSP56005

PWM

fault
detection

3

A/D

memory

compensator

IM

3

6
a b

~ line60Hz

Vff
*
c

c

1

S

θe
*

Figure 4.20: The experimental setup and the gain linearized DPWM1 based V

f

controlled motor drive block diagram.

The blanking time of the inverter is 4�s. The controller is fully digital and it

employs a 24 bit �xed point DSP (Motorola 56005) with 40 MHz clock frequency

[80]. The experimental system diagram is shown in Fig. 4.20 in detail.

For the purpose of voltage gain measurement, operating the drive in the

constant V/f mode is adequate and the motor can be operated at no-load. The

V/f algorithm and the modulation waves are generated by the DSP. In par-

ticular, generation of all the discussed modulation waves, exact blanking time

compensation, and when required MPW control are all simple tasks requiring

only a few lines of software code when employing a DSP. The digitally imple-

mented triangle comparison hardware (PWM block) is also inside the DSP chip

providing a compact integrated solution.

First, the SPWM and SVPWM method voltage gain characteristics were
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extracted by measuring the reference and output line-line voltages from zero

voltage until the six-step mode could be reached. The inverter output volt-

age fundamental component value was measured by a dynamic signal analyzer

(HP35670A). The inverter DC bus voltage was also measured in order to ac-

count for the utility line and load dependent DC bus voltage variations. The test

was conducted with and without PEM based MPW control algorithm. When

employed, PEM eliminates (drops) the pulses which are narrower than 12�s.

Experimental results are shown in Fig. 4.21 along with the analytical results.

As the �gure clearly indicates, the theoretical and experimental results match

with good accuracy. The SVPWM method has wider linearity range than the

SPWM method, and both methods require very large reference signals in order

to reach the six-step mode. As the experimental data indicates, PEM narrows

the linearity range of both modulators quite signi�cantly.

In the second stage, the gain characteristics of DPWM1 were measured, �rst

without PEM control, and second with 12�s PEM control. In the following, an

inverse gain algorithm was implemented for the PEM controlled case and gain

data extracted. Selecting the MPW length as 12�s, the inverse gain function

data was computed from (4.44) and this data was utilized to extract the fol-

lowing numerical approximation for the inverse gain compensated modulation

index function.
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M��
i (M�

i ) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

M�
i 0 < M�

i < 0:852;

0:5252M�
i + 0:4026 0:852 < M�

i < 0:88

1:0823M�
i � 0:0887 0:88 < M�

i < 0:91

1:6659M�
i � 0:6191 0:91 < M�

i < 0:94

3:4396M�
i � 2:2903 0:94 < M�

i < 0:97

7:9754M�
i � 6:6882 0:97 < M�

i < 0:99

1:247 0:99 < M�
i < 0:992

1:285 0:992 < M�
i < 0:994

1:335 0:994 < M�
i < 0:996

1:422 0:996 < M�
i < 0:998

1:49 0:998 < M�
i < 0:999

1:547 0:999 < M�
i < 0:9993

1:65 0:999 < M�
i < 0:9995

1:81 0:9995 < M�
i < 1:0

(4.50)

The above numerical representation provides a straightforward and highly

accurate approximation with little computation and memory requirements, suit-

able for microprocessor or DSP implementations. In the gain linearized case,

a DC bus voltage disturbance decoupling algorithm which scales the reference

modulation index by
V �

dc

Vdc
was also implemented in order to account for the DC

bus voltage variations. The
V �

dc

Vdc
value was computed by a simple Taylor series

approximation ( 1
1+x

� 1 � x+ x2) instead of straightforward division which

consumes signi�cant amount of computations. The complete block diagram of
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the system for this case is shown in Fig. 4.20.

Figure 4.22 shows the theoretical and experimental gain characteristics of

the DPWM1 method. The linearity range of the DPWM1 method as the data

indicates is wider than the SVPWM case, and the in
uence of the MPW al-

gorithm is signi�cantly smaller. The gain compensator, as shown in the �gure

extends the modulator linearity until near the six-step operating mode with

high accuracy.
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For the purpose of comparing the waveform quality of DPWM1 and SVPWM,

the motor currents for several modulation index values are demonstrated along

with the modulation waveforms. The modulation signals were output from the

DSP through a D/A converter and the triangular wave gain is 20V
V �

dc

(�10V rep-

resent the positive/negative DC rail clamp conditions). Figure 4.23 and Figure

4.24 illustrate the motor current and modulation waveforms of SVPWM and

DPWM1 for M�
i � 0:75. As the �gures indicate, both modulators have good

waveform quality within the linear modulation range and the ripple of SVPWM

is slightly less. However, as the modulation index is increased and MPW control

is applied the SVPWM performance degrades signi�cantly. Figure 4.25 shows

when a 12�s PEM is employed, the SVPWM method performance degrades at

M�
i � 0:82, a value signi�cantly smaller than the theoretical linearity limit of

0.907. The modulator linearity is lost at M�
i � 0:82 and the current waveform

contains signi�cant low frequency harmonic distortion leading to poor motor

performance. As illustrated by the M�
i � 0:855 operating point in Fig. 4.26,

DPWM1 maintains linearity and low harmonic distortion in a signi�cantly wider

modulation range. As illustrated in Fig. 4.27 by the M�
i � 0:876 operating

point, beyond M�
i � 0:855 , modulator linearity is lost and the waveform qual-

ity signi�cantly degrades. Further increase in the modulation index results in

signi�cant increase of the low frequency subcarrier harmonic content. Figure

4.28 illustrates the near six-step mode behavior of the inverter.

Notice in all the �gures which belong to the high modulation region, the

PWM ripple current magnitude appears to be practically the same. Since the
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Figure 4.23: Experimental SVPWM modulation wave, its fundamental compo-
nent and the motor current waveforms forM�

i = 0:75. Scales: 2ms/div, 2A/div,
5V/div.

Figure 4.24: Experimental DPWM1 modulation wave, its fundamental compo-
nent and the motor current waveforms for M�

i = 0:75 value. Scales: 2ms/div,
2A/div, 5V/div.
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Figure 4.25: Experimental SVPWM modulation wave, modulation signal pre-
vious to MPW block, its fundamental component and the motor current wave-
forms for M�

i = 0:82. Note the low frequency current harmonic distortion.
Scales: 2ms/div, 2A/div, 5V/div.

Figure 4.26: Experimental DPWM1 modulation wave, its fundamental compo-
nent and the motor current waveforms for M�

i = 0:855 value. Scales: 2ms/div,
2A/div, 5V/div.
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Figure 4.27: Experimental DPWM1 modulation wave, modulation signal pre-
vious to MPW block, its fundamental component and the motor current wave-
forms for M�

i = 0:876. Scales: 2ms/div, 2A/div, 5V/div.

Figure 4.28: Experimental DPWM1 modulation wave, modulation signal pre-
vious to MPW block, and the motor current waveforms for M�

i = 0:964. Note
near the six-step mode the low frequency subcarrier harmonics are dominant.
Scales: 2ms/div, 2A/div, 5V/div.
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carrier frequency is �xed at 5 kHz for both SVPWM and DPWM1, the av-

erage switching frequency of DPWM1 is 33 % less than SVPWM. Therefore,

DPWM1 has signi�cantly reduced switching losses compared to SVPWM. Con-

sidering the reduction in the switching losses and increase in the linear modu-

lation range, the DPWM1 method, clearly becomes the choice for operating in

the high modulation range.

Finally, the sensitivity of the V/f controlled drive to DC bus voltage vari-

ations is illustrated with and without the inverse gain compensation and DC

bus disturbance decoupling algorithms. The V/f controlled induction machine

was operated at constant inverter output voltage reference value V �
1m = 337

V (M�
i = 0:855 at V �

dc = 620V ). Obtained from a diode recti�er, the DC

bus voltage of the drive was slowly varied by adjusting the AC input voltage

via an autotransformer and the motor terminal voltage was measured. Figure

4.29 illustrates the experimental inverter output voltage-DC bus voltage char-

acteristics with and without inverse gain compensation and DC bus voltage

disturbance decoupling. As the �gure indicates, the compensated case out-

put voltage is maintained at the commanded value until the DC bus voltage

is signi�cantly reduced and the inverter operates in the six-step mode. The

uncompensated case output voltage signi�cantly changes with the DC bus volt-

age variation. The motor speed and torque deviate from the normal operating

points and poor drive performance results. Therefore, the compensated drive

performance is insensitive to the DC bus voltage variations for a wide range of

DC bus voltage variations (utility line voltage sag or surge conditions), while
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the uncompensated drive experiences disturbances.

4.9 Voltage Feedforward PWM-VSI Drive High

Performance Modulator Design

In the previous chapter the linear modulation region performance analysis of

modern modulators indicated SPWM or SVPWM could provide superior per-

formance in the lower linear modulation region and GDPWM and DPWM3
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have superior attributes in the remainder of the linear modulation region. As

this chapter illustrated the superior overmodulation region performance charac-

teristics of DPWM1 (as a unique operating point of GDPWM), the conceptual

stage of a high performance modulation algorithm design has been completed for

voltage feedforward drives. The remaining task in the high performance modu-

lation algorithm design procedure is to select appropriate modulation methods,

determine the modulation method transition points and establish the control

algorithm.

To maximize the drive performance, the transition point from SPWM/SVPWM

to GDPWM and the  value of GDPWM must be properly selected. As the pre-

vious chapter indicated, the transition point from SPWM/SVPWM to GDPWM

is determined by the waveform quality characteristics while the GDPWM mod-

ulator phase angle  is determined from the switching loss and voltage gain

characteristics. Figure 4.30 shows the on-line modulator selector 
ow diagram

of the proposed algorithm. Simple in structure and computational procedure,

the algorithm requires only two transition modulation indices and ' as optimiza-

tion parameters. With ' on-line estimated, the algorithm on-line calculates the

optimal  to maximize the drive performance.

The transition value Mitr2 is determined by the GDPWM linearity limit

from (3.54) for km = 1. However, the optimal value of Mitr1 depends on the

carrier frequency value as well as the SLF and HDF characteristics. To assist

in selecting this transition value, the HDF curves of SVPWM and GDPWM for
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various carrier frequency values are compared in Fig. 4.31 for  = �

4
(approxi-

mate average value over 0 �  � �

3
). As the �gure indicates, depending on the

carrier frequency value, three practical cases can be distinguished.

1) Constant carrier frequency (fc = const:): As Fig. 4.31 indicates the

theoretical HDF curves of SVPWM and GDPWM do not intersect and SVPWM

is superior to GDPWM until Mitr1 (calculated from (3.54) for km = 2). As a

result, transition from SVPWM to GDPWM at a point before Mitr1 implies

an increase in the current waveform distortion. However, according to Fig. 3.21

with early entrance to GDPWM, the switching losses can be reduced by as much

as 50%. If the waveform quality requirements are not stringent, the Mitr1 value

should be selected as small as possible. Given a HDF limit, theMitr1 transition

point can be easily determined from Fig. 4.31. More precise calculations to

determine its value could involve (3.42) and (3.54).

2) Constant inverter average switching frequency (fswave = const:): In this

case, the carrier frequency for SVPWM case is selected as fc, and for GDPWM

as 1:5fc, such that the inverter average switching frequency, fswave remains con-

stant. The HDF curves of Fig. 4.31 indicate the intersection point of SVPWM

and GDPWM is atMitr1 � 0:65. Therefore, thisMitr1 value minimizes the HDF

of the drive, and under this condition the switching losses in the GDPWM mode

are reduced by at most 25% when compared to SVPWM.

3) Constant switching losses (Pswave = const:): In this case, the carrier

frequency for SVPWM case is selected as fc, and for GDPWM as 2fc, such that
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the inverter switching losses Pswave remain constant (this is true for �30� �

' � 30� where the optimal SLF of GDPWM is 0.5). Figure 4.31 indicates

that the SVPWM and GDPWM method curves are close together until near

a modulation index of 0.3, then GDPWM method becomes superior. With

this approach, smallest possible Mitr1 becomes equal to the undermodulation

limit of GDPWM de�ned in (3.55). Figure 4.31 indicates, in applications with

small current ripple requirement,Mitr1 � 0:3 would yield superior performance.

Note in this case SPWM can be utilized instead of SVPWM. Since at such low

modulation levels SPWM and SVPWM have practically the same performance,

SPWM can be chosen for its implementation simplicity.
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The full PWM algorithm can be easily and e�ciently programmed in a

microprocessor or a DSP leading to a low cost high performance drive. Since

the transition from SVPWM to GDPWM only involves a zero sequence signal,

oscillatory transitions do not a�ect the load current fundamental component and

motion control. Only the switching frequency harmonic content changes. The

computational requirements of the algorithm (including the modulation signal

generation) are only slightly higher than the conventional modulation methods.

Thus, the algorithm is suitable over a wide range of applications where low cost,

high performance, and high energy e�ciency are in demand. Perhaps, the most

suitable applications of the combined algorithm are the future generation multi-

purpose intelligent drives. With the controller tuning the modulator on-line for

the application, or by allowing the user to con�gure the modulator of his/her

choice, an increased level of performance and satisfaction to the costumer would

result. Therefore, it is believed this algorithm will be an indispensable feature

of future generation drives.

Linear modulation region performance of the above described high perfor-

mance modulation algorithm was illustrated in the previous chapter by labora-

tory experiments. The present chapter experimentally illustrated the DPWM1

overmodulation region performance with a di�erent motor from the motor uti-

lized in the experiments of the previous chapter. The overmodulation region

performance of the above described modulation algorithm with the previously

utilized motor will next be presented for the sake of completeness.
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4.10 Experimental Results of GDPWM in the

Overmodulation Region

The high performance modulation algorithm combining SVPWM in the low

modulation region, and GDPWM from the transition modulation index until

the six-step operating point was tested in the laboratory and the linear modula-

tion region performance was illustrated in the previous chapter. The overmod-

ulation region performance of the drive with the same motor will be illustrated

in this section. As described in the experimental results section of the previous

chapter, with 12�s minimum pulse width control (PEM) the GDPWM voltage

linearity ends at 0:854 modulation index (calculated from (3.54)). However, the

experimental study indicated transition at 0.86 modulation index value did not

cause noticeable waveform quality degradation. Therefore, Mitr2 = 0:86 was

selected. As a result, within 0:81 < Mi < 0:86 the GDPWM method reduces

the switching losses signi�cantly and maintains high waveform quality. Above

Mitr2 the GDPWM algorithm on-line selects  = �

6
for maximum voltage gain,

and the inverse gain compensated and DC bus voltage disturbance rejected

modulator operates in the overmodulation range.

Figure 4.32 and Figure 4.33 show the modulator and motor phase current

waveforms during and after transition to the nonlinear modulation range (Mi =

0:86; 0:903). As the �gures indicate the zero sequence signal oscillation (sudden

variation of  ) does not distort the fundamental component current, and motion
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quality is not a�ected. As the HDF curves of Figure 3.17 suggest, in the upper

linear modulation range the phase current ripple of GDPWM decreases as the

modulation index increases. In the overmodulation range the switching losses

are reduced by at least 40% when compared to SVPWM. As the modulation

index is further increased large amount of non-triplen odd subcarrier frequency

voltage/current harmonics are generated and the waveform quality degrades

due to inverter saturation. However, as Figure 4.34, and Figure 4.35 indicate,

the modulated segments of the current waveform still retain the low harmonic

distortion characteristic of the GDPWM method.

Figure 4.36 and Figure 4.37 illustrate and compare the e�ect of the PEM

algorithm on the SVPWM and GDPWM method performance. As the ex-

perimental waveforms indicate, with 12 �s PEM, the SVPWM method looses

linearity at a lower modulation index than GDPWM method and the phase

current waveform distorts signi�cantly. As all the experimental waveforms in-

dicate, the SVPWM method in the lower modulation range combined with the

GDPWM method in the remainder of the range is a superior approach.

4.11 Summary

Closed form fundamental component voltage gain formulas of the conventional

carrier based PWM methods, which are useful tools in the analysis and design
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Figure 4.32: Transition of GDPWM from  = ' to  = 0 (Mi = 0:86, 54 Hz,
100%TeR). Scaling: 5 A /div, 2 V /div, 2ms/div.

Figure 4.33: Experimental GDPWM modulation wave, its fundamental compo-
nent and the motor current waveforms (Mi = 0:903, 56 Hz, 100%TeR). Scaling:
5 A /div, 2 V /div, 2ms/div.
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Figure 4.34: Experimental GDPWM modulation wave, its fundamental compo-
nent and the motor current waveforms in the overmodulation range (Mi = 0:96,
59 Hz, 100%TeR). Scaling: 5 A /div, 2 V /div, 2ms/div.

Figure 4.35: GDPWM modulation wave and motor current waveforms in the
overmodulation range (Mi = 0:986, 60 Hz, 100%TeR). Scaling: 5 A /div, 2 V
/div, 2ms/div.
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Figure 4.36: SVPWM modulation wave, PEM controlled modulation wave and
the motor current waveforms for Mi = 0:815, 49 Hz. Scaling: 5 A /div, 2 V
/div, 2ms/div.

Figure 4.37: GDPWM modulation wave, PEM controlled modulation wave and
the motor current waveforms for Mi = 0:867, 53 Hz. Scaling: 5 A /div, 2 V
/div, 2ms/div.
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of PWM-VSI drives were derived. High modulation index operating range volt-

age gain characteristics of various conventional carrier based PWM methods

were analyzed and comparative results provided. Overmodulation region wave-

form characteristics of various PWM methods were numerically investigated

and compared. The study indicates the DPWM methods have wider linear-

ity range than the CPWM methods. The overmodulation range performance

characteristics of DPWM1 are shown to be superior to the remainder of the

known modulators. The voltage gain of DPWM1 is exceptionally high and its

harmonic distortion is low.

It is shown that the inverter blanking time and minimum pulse width con-

trol based nonlinearities can signi�cantly in
uence voltage gain and harmonic

distortion characteristics of a modulator. MPW control signi�cantly reduces

the linearity range and increases the harmonic distortion. The e�ect is less

signi�cant in DPWM methods compared to CPWM methods.

The study indicates that for best overall performance a combination of vari-

ous modulators must be employed: In the low modulation index range SVPWM

has lower harmonic distortion. In the high modulation index range DPWM

methods have wider linearity and less harmonic distortion. In the high linear

modulation region the superiority of GDPWM was illustrated in the previous

chapter. Therefore, in the overmodulation region, selecting the DPWM1 oper-

ating point of GDPWM results in optimal performance.

Voltage gain linearization is a simple task with DPWM1, and a polynomial
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curve �t based inverse gain function in most of the region, and a small table

entry near six step was found to be adequate to provide good linearity in the

overmodulation range. The simpli�ed inverse gain compensation and DC bus

disturbance decoupling algorithms linearize the modulator with high accuracy

and result in high drive performance.

Experimental voltage gain and waveform characteristics are in good agree-

ment with the theoretical predictions, and illustrate the performance superiority

of GDPWM over SVPWM in the high modulation and overmodulation range

(in particular of DPWM1).

Finally, the high performance modulator design rules for voltage feedforward

controlled drives were established and a high performance modulation algorithm

which combines SVPWM and GDPWM was developed. Simple design formulas

and graphics, which overly simplify the voltage feedforward drive modulator

design procedure were established.

The next chapter addresses the overmodulation issues of closed loop current

controlled PWM-VSI drives. With the dynamic performance requirements of

current controlled drives being substantially higher than voltage feedforward

drives, these drives di�er in design and performance than the voltage feedfor-

ward drives. Therefore, the subject is of signi�cant importance and will be

thoroughly investigated in the remainder of this thesis.


