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Abstract— This paper provides analytical and graphical tools for the
study, performance evaluation, and design of the modern carrier based
PWM methods which are widely employed in PWM-VSI drives. Simple
techniques for generating the modulation waves of the high performance
PWM methods are described. The two most important modulator char-
acteristics, the current ripple and the switching losses are analytically
modeled. The graphical illustration of these often complex multivari-
able functions accelerate the learning process and help understand the
microscopic (per carrier cycle) and macroscopic (per fundamental cycle)
behavior of all the modern PWM methods. The analytical formulas and
graphics are valuable educational tools. They also aid the design and
implementation of the high performance PWM methods.

I. INTRODUCTION

Voltage Source Inverters (VSIs) are utilized in AC motor drive, util-
ity interface, and Uninterruptible Power Supply (UPS) applications as
means for DC, AC electric energy conversion. Shown in Figure 1,
the classical VSI generates a low frequency output voltage with con-
trollable magnitude and frequency by programming high frequency
voltage pulses. Of the various pulse programming methods, the car-
rier based Pulse Width Modulation (PWM) methods are the preferred
approach in most applications due to the low harmonic distortion wave-
form characteristics with well defined harmonic spectrum, the fixed
switching frequency, and implementation simplicity.
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Fig. 1. Circuit diagram of a PWM-VSI drive connected to an R-L-E type load.
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Carrier based PWM methods employ the “per carrier cycle volt-
second balance” principle to program a desirable inverter output volt-
age waveform. Two main implementation techniques exist: the tri-
angle intersection technique and the direct digital technique. In the
triangle intersection technique, for example in the Sinusoidal PWM
(SPWM) method [1], as shown in Figure 2, the reference modulation
wave is compared with a triangular carrier wave and the intersections
define the switching instants. As illustrated in the spacevector diagram
in Figure 3, the time length of the inverter states in the direct digital
technique are precalculated for each carrier cycle by employing space
vector theory and the voltage pulses are directly programmed [2, 3].

With the volt-second balance principle being quite simple, a variety of
PWM methods have appeared in the technical literature; each method
results from a unique placement of the voltage pulses in isolated neutral
type loads.
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Fig. 2. Triangle intersection PWM phase “a” modulation and switching signals.
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Fig. 3. The space vector diagram illustrates the direct digital implementation
principle. The upper switch states are shown in the bracket as (Sa+,
Sb+, Sc+) and “1” is “on” state while “0” corresponds to “off” state.

In most three phaseAC motor drive and utility interface applications
the neutral point is isolated and no neutral current path exists. In such
applications in the triangle intersection implementations any zero se-
quence signal can be injected to the reference modulation waves [4, 5].
The n-o potential in Figure 1 which will be symbolized with v0 can be
freely varied. This degree of freedom is illustrated with the generalized
signal diagram of Figure 4. A properly selected zero sequence signal
can extend the volt-second linearity range of SPWM. Furthermore, it
can improve the waveform quality and reduce the switching losses sig-
nificantly. Recognizing these properties, many researchers have been



investigating the zero sequence signal dependency of the modulator
performance and a large number of PWM methods with unique charac-
teristics have been reported [6]. Detailed research showed the freedom
in selecting the partitioning of the two zero states “0” (000) and “7”
(111) in the direct digital PWM technique is equivalent to the freedom
in selecting the zero sequence signal in the triangle intersection PWM
technique [2, 7].
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Fig. 4. The generalized signal block diagram of the triangular intersection tech-
nique based PWM employing the zero sequence injection principle.

Although the PWM literature is rich and the technology is mature,
the educationalmaterial in this field is scarce. Among the large amount
of publications, several papers report and utilize powerful performance
analysis tools and discuss the performance characteristics of various
zero sequence signal injection carrier based PWM methods [8, 9, 10].
However, the information is often scattered and incomplete. Since
the modulator characteristics are often complex multivariable func-
tions and the analytical formulas are nonintuitive, the PWM learning
process can be discouraging and a methodical approach is required.
To understand the characteristics of various modulators, both the per
carrier cycle and per fundamental cycle behavior must be carefully
studied. Therefore, establishing a methodical approach and bringing
analytical tools together aids the PWM study. Furthermore, graphi-
cal tools that illustrate the performance characteristics of a modulator
and compare it to other modulators would be valuable and they would
accelerate the learning process. This paper brings the analytical tools
together and adds several important components to the toolbox. In ad-
dition to simplifying and accelerating the PWM learning process, the
graphical illustrations and analytical tools aid the design, performance
evaluation, and implementation of the modern PWM methods.

The paper first reviews the carrier based PWM principle and sum-
marizes the triangle intersection and space vector approaches which
lead to two different implementation techniques. After a brief review
of the modern PWM methods, simple methods for generating the mod-
ulation waves of the modern triangle intersection PWM methods are
described. The remainder of the paper is dedicated to the development
of simple analytical tools for performance analysis. Analytical cur-
rent harmonic and switching loss characteristics of various modulators
are derived, graphically illustrated, and compared to distinguish the
important differences. Voltage linearity is also discussed.

Since the performance characteristics of a modulator are primarily
dependent on the voltage utilization level, i.e. modulation index, it is
helpful to define a modulation index term at this stage. For a given DC
link voltage Vdc, the ratio of the fundamental component magnitude
of the line to neutral inverter output voltage, V1m , to the fundamental
component magnitude of the six-step mode voltage, V1m6step = 2Vdc

� ,
is termed the modulation index Mi [6]:

Mi =
V1m

V1m6step
(1)

II. REVIEW OF THE CARRIER BASED PWM PRINCIPLE

Although it does not affect the inverter line to line voltage per carrier
cycle average value, the zero sequence signal of a modulator signifi-
cantly influences the switching frequency characteristics. Therefore,
the per carrier cycle (microscopic) characteristics of different modula-
tors are important and must be modeled for detailed analysis.

As shown in Figure 5 in the triangle intersection method, the mod-
ulation signals are compared with the triangular carrier wave and the
intersection points define the switching instants. The duty cycle of
each switch can be easily calculated in the following.

dSx+ =
1
2
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) for x 2 fa; b; cg (2)

dSx� = 1� dSx+ for x 2 fa; b; cg (3)
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Fig. 5. The per carrier cycle view of switch logic signals, inverter states, and
VSI output voltages for 0 � wet � �

3 (R = 1).

With the modulation waveforms defined with the following cosine
functions, the wet time axis of the modulation waves and complex
plane reference voltage vector anglewet coincide.

v��a = v�a + v0 = V �1mcos (wet) + v0 (4)

v��b = v�b + v0 = V �1mcos (wet� 2�
3
) + v0 (5)

v��c = v�c + v0 = V �1mcos (wet+
2�
3
) + v0 (6)



For the above defined modulation functions and 0 � wet � �
3 , the

inverter states of the triangle intersection PWM methods are 7-2-1-
0-0-1-2-7 as shown in Figure 5. This symmetric switching sequence
is superior to other sequences due to the low distortion characteris-
tic. Therefore, this sequence is adopted in the direct digital methods
also [2]. As will be later discussed in detail, either the two “7” states
at both ends, or the “0” states in the middle are often omitted to further
reduce the switching frequency. The zero state to be eliminated is
the state which reduces the switching losses more [7]. Notice that a
zero sequence signal simultaneously shifts the three reference signals
in the vertical direction and while it changes the position of the output
line-to-line voltage pulses, i.e. the active inverter state time lengths,
it does not affect their width. The time length of the active and zero
states of the triangle intersection methods can be directly calculated
from the duty cycle information; Figure 5 illustrates these relations.
However, in the direct digital technique, the inverter state time lengths
are directly calculated employing space vector theory and Zero State
Partitioning (ZSP) is selected by the programmer.

In the space vector approach, employing the complex variable trans-
formation, the time domain modulation signals are translated to the
complex reference voltage vector which rotates in the complex coor-
dinates at the wet angular speed in the following.

V � =
2
3
(v�a + av�b + a2v�c ) = V �1me

jwet where a = ej
2�
3 (7)

The complex number volt-second balance equation in theR’th sec-
tor of the hexagon in Figure 3 determines the time length of the two
adjacent state active inverter statesR andR+1 (R = 6! R+1 = 1)
and the total zero state time length in the following.

VRtR + VR+1tR+1 = V �Ts (8)

tR =
2
p

3
�

Misin (R
�

3
�wet)Ts (9)

tR+1 =
2
p

3
�

Misin (wet� (R� 1)
�

3
)Ts (10)

t0 + t7 = Ts � tR � tR+1 (11)

Defined by the following, ZSP of the two inverter zero states, �0 and
�7, provides the degree of freedom in the direct digital technique [7].

�0 =
t0

t0 + t7
(12)

�7 = 1� �0 (13)

In order to simplify the analytical investigations, the inverter state
time lengths can be expressed in terms of per carrier cycle or per half
carrier cycle duty cycle in the following.

dR =
tR
Ts

=
tR=2
Ts=2

for R 2 f0; 1; :::;7g (14)

With the degree of freedom in the triangle intersection PWM being
the v0 signal, and in the direct digital technique the �0 partitioning, the
modern PWM methods are discussed next.

III. MODERN PWM METHODS AND THE MAGNITUDE RULES

Although theoretically an infinite number of zero sequencesignals and
therefore modulation methods could be developed, the performance
and simplicity constraints of practical PWM-VSI drives reduce the
possibility to a small number. Over the last three decades of PWM
technology evolution, about ten high performance carrier based PWM
methods were developed and of these only several have gained wide
acceptance. Figure 6 illustrates the modulation and zero sequence
signal waveforms of these modern triangle intersection PWM methods.
In the figure, unity triangular carrier wave gain is assumed and the
signals are normalized to Vdc

2 . Therefore, �Vdc
2 saturation limits

correspond to �1. In the figure only phase “a” modulation wave is
shown, and the modulation signals of phase “b” and “c” are identical
waveforms with 120� phase lag and lead with respect to phase “a.” The
references indicated in the figure correspond to the original articles
reporting these modulators.
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Fig. 6. Modulation waveforms of the modern PWM methods (Mi = 0:7).
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The modulators illustrated in Figure 6, can be separated into two
groups. In the Continuous PWM (CPWM) methods, the modulation
waves are always within the triangle peak boundaries and within every
carrier cycle triangle and modulation wave intersections and there-
fore on and off switchings occur, while in the Discontinuous PWM
(DPWM) methods, the modulation wave of a phase has at least one
segment which is clamped to the positive and/or negative DC rail for at
most a total of 120�, therefore within such intervals the corresponding
inverter leg discontinues modulation. Since no modulation implies
no switching losses, the switching loss characteristics of CPWM and



DPWM methods are different. Detailed studies indicated the wave-
form quality and linearity characteristics are also significantly differ-
ent. Therefore, this classification aids in distinguishing the differences.

Of the four modern CPWM methods shown in Figure 6, the SPWM
method is the simplest modulator with limited voltage linearity range
and poor waveform quality in the high modulation range. The trian-
gle intersection implementation of the Space Vector PWM (SVPWM)
method and the two Third Harmonic Injection PWM (THIPWM) meth-
ods are the other three CPWM methods which were reported in the
literature. These modulators are discussed in the following.

THIPWM: Due to the simplicity of algebraically defining their zero
sequence signals, these modulators have been frequently discussed
in the literature. With v�a defined as in (4), the zero sequence sig-
nal of THIPWM1/6 is v0 = �V1m

6 cos 3wet [5] and for THIPWM1/4
v0 = �V1m

4 cos 3wet [14] is selected. Both methods suffer from
implementation complexity, because generating the cos 3wet signal is
difficult both with hardware and software. Trigonometric identities can
be utilized to compute cos 3wet from the coswet signal, however the
computational intensity (several multiplications are required) results
in loss of significance by several bits and poor resolution is obtained in
signal processors with limited wordlength. Although the THIPWM1/4
has theoretically minimum harmonic distortion, it is only slightly bet-
ter than SVPWM and has narrower voltage linearity range [6, 15, 16].
With their performance being very similar to SVPWM and implemen-
tation complexity significantly higher, both THIPWM methods have
academic and historical value, but little practical importance.

SVPWM: The zero sequencesignal of SVPWM is generated by em-
ploying the minimum magnitude test which compares the magnitudes
of the three reference signals and selects the signal with minimum
magnitude [17]. Scaling this signal by 0.5, the zero sequence signal
of SVPWM is found. Assume jv�aj � jv�b j; jv�c j, then v0 = 0:5� v�a.
The analog implementation of SVPWM which employs a diode rec-
tifier circuit to collect the minimum magnitude signal from the three
reference signals is possibly the earliest zero sequence signal injection
PWM method reported [4]. About a decade later, this modulator re-
appeared in the literature with direct digital implementation [2]. Since
the direct digital implementation utilized the space vector theory, the
method was named SVPWM. In addition to its implementation sim-
plicity, the SVPWM method has superior performance characteristics
and is possibly the most popular method. However, its high modu-
lation range performance is inferior to DPWM methods, which also
employ similar magnitude rules to generate their modulation waves. In
the following the modern DPWM methods and their magnitude rules
are summarized.

DPWM3: The reference signal with the intermediate magnitude
defines the zero sequence signal. Assume jv�b j � jv�aj � jv�c j, then
v0 = sign(v�a)

Vdc
2 � v�a. This method has low harmonic distortion

characteristics [15].
DPWMMAX: The reference signal with the maximum value defines

the zero sequence. Assume v�b � v�a � v�c , then v0 = Vdc
2 �v�c yields

and phase “c” is unmodulated [13].
DPWMMIN: The reference signal with the minimum value defines

the zero sequence. Notice the DPWMMAX and DPWMMIN methods
have nonuniform thermal stress on the switching devices and in DP-
WMMAX the upper devices have higher conduction losses than the
lower, while in DPWMMIN the opposite is true.

GDPWM: DPWM0, DPWM1 and DPWM2 are three special cases
of a Generalized DPWM (GDPWM) method [18], therefore a general
study of the GDPWM method is sufficient. Figure 7 illustrates the zero

sequencesignal generation method of GDPWM. To aid the description
of GDPWM, it is useful to define the modulator phase angle increas-
ing from the intersection point of the two reference modulation waves
atwet = �

6 as shown in Figure 7. From  to + �
3 , the zero sequence

signal is the shaded signal which is equal to the difference between
the saturation line (Vdc2 ) and the reference modulation signal which
passes the maximum magnitude test. In the maximum magnitude test,
all three reference modulation signals v�a, v�b , and v�c are phase shifted
by  � �

6 , and of the three new signals v�ax, v�bx, and v�cx, the one with
the maximum magnitude determines the zero sequence signal. As-
sume jv�axj � jv�bxj; jv�cxj, then, v0 = (sign(v�a))

Vdc
2 � v�a. Adding

this zero sequence signal to the three original modulation waves v�a,
v�b , and v�c , the GDPWM waves v��a , v��b , and v��c are generated.
For  = 0 DPWM0, for  = �

6 DPWM1, for  = �
3 DPWM2

correspond to only three operating points on the full  range of the
modulator (0 �  � �

3 ). Due to their superior performance charac-
teristics, these three operating points of GDPWM have found a wide
range of applications.
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Fig. 7. Generating the GDPWM zero sequence signal with the  variable.

All the magnitude tests require a small number of computations and
therefore can be easily implemented with a microcontroller or DSP.
Due to the simplicity of the algorithm, it is easy to program two or
more methods and on-line select a modulator in each operating region
in order to obtain the highest performance [18]. Analog or digital hard-
ware implementations of the above modulators can be easily developed
by following the magnitude test computational procedures. With the
exception of THIPWM and SPWM methods, all the above discussed
triangle intersection PWM methods can be easily implemented in the
direct digital method. Mapping the zero state partitioning of the time
domain modulation waves of Figure 6 onto the vector space domain,
the direct digital implementation equivalents can be easily obtained.
Figure 8 illustrates this equivalency and the ZSP of each method.
A clear illustration of this equivalency is an important step towards
simplifying the learning process.

Due to its simplicity, the magnitude test is a very effective tool for
simulation, analysis, and graphic illustration of different modulation
methods. For example, the simulation or DSP implementation of the
SVPWM method with a direct digital technique is involved: the sector
to which the voltage vector belongs has to be identified first, then the
time length of each active vector must be calculated, and finally gate
pulses must be generated in a correct sequence. Although it is possible
to reduce the direct digital PWM algorithms, the effort does not yield
as simple and intuitive a solution as the magnitude test [19]. Therefore,
employing the magnitude test the triangle intersection PWM method
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is superior to the direct digital method from a simulation as well as
implementation perspective. With the modulation signals generated
by the magnitude test, the performance analysis follows.

IV. WAVEFORM QUALITY

The linear modulation range output voltage of a carrier based PWM-
VSI drive contains harmonics at the carrier frequency, at its integer
multiples, and at the side bands of all these frequencies which will
all be termed as “the switching frequency harmonics.” With suffi-
ciently high carrier frequency, fs to fundamental frequency, fe ratios
( fs
fe
> 20) the low frequency reference volt-seconds are programmed

accurately and the subcarrier frequency harmonic content is negli-
gible [8]. Since modern power electronics switching devices such as
IGBTs and MOSFETs typically meet this requirement, the voltage and
current waveform quality of the PWM-VSI drives is determined by the
switching frequency harmonics. Since they determine the switching
frequency copper losses and the torque ripple of a motor load and
the line current Total Harmonic Distortion (THD) of a line connected
VSI, the switching frequency harmonic characteristics of a PWM-VSI
drive are important in determining the performance. While the copper
losses are measured over a fundamental cycle and therefore require a
per fundamental cycle (macroscopic) RMS ripple current value calcu-
lation, the peak and local stresses are properly investigated on a per
carrier cycle (microscopic) base. Therefore, first a microscopic and
then a macroscopic investigation is required.

Perhaps, the most intuitive and straightforward approach for analyt-
ical investigation of the switching frequency harmonic characteristics
of a PWM-VSI is the vector space approach [20, 21]. As illustrated
in the vector diagram of Figure 9, within each carrier cycle the har-
monic voltage vectors V1h , V2h , and V0h , are space and modulation
index dependent. Along with the harmonic voltage vectors, the duty
cycle of the active inverter states and partitioning of the two zero states
determine the harmonic current trajectories. Instead of the harmonic

current trajectories, the conceptual harmonic flux (time integral of the
harmonic voltage vector) �h trajectories can be investigated and with
the assumption the load switching frequency model is an inductance
(this is true in most applications due to fs

fe
> 20), the harmonic current

and harmonic flux trajectories are only different in scale (� = Li). The
harmonic flux in the N’th carrier cycle is calculated in the following.

�h(Mi; �; V0) =

Z (N+1)Ts

NTs

(Vk � V �)dt (15)

In the above formula, Vk is the inverter output voltage vector of
the k’th state and within the carrier cycle it changes according to the
selected switching sequence (7-2-1-0-0-1-2-7 for R = 1). Note the
harmonic flux calculation requires no load information,and completely
characterizes the switching frequency behavior of a modulator. Since
for high fs

fe
values the V � term can be assumed constant within a

carrier cycle, and the Vk terms are constant complex numbers, the
above integral can be closed form calculated and the flux trajectories
are linear over each state. Assuming its value at the beginning of the
carrier cycle is zero, the harmonic flux vector crosses the origin at the
center and at the end of the carrier cycle again. Therefore, (15) always
assumes zero initial value. Since in the triangular intersection and
direct digital PWM methods only symmetric switching sequences are
generated, the integral need only be calculated in the first half of the
carrier cycle and the second half of the trajectory is exact symmetrical
to the first. As illustrated in Figure 9 for the first segment of the inverter
hexagon, the harmonic flux trajectories form two triangles which may
slide along the reference vector line in opposite directions with respect
to the origin. It is apparent from the diagram ZSP determines the slip
and affects the harmonic characteristics. Therefore, the harmonic flux
trajectories of each PWM method are unique.
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Calculating the harmonic flux vector for a half carrier cycle for the
first region of the vector space for an arbitrary set of Mi, �, and ZSP
(V0) and normalizing to �b for further simplification the following
normalized analytical harmonic flux formula �1(d;Mi; �) yields.

�b =
2Vdc
�

Ts
2

(16)

�1 =
�h1

�b
(17)
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In the second half of the carrier cycle, the harmonic flux can be
calculated from the symmetry condition: �2(d) = ��1(1�d). How-
ever, in this half the inverter state duty cycles must be evaluated in
the reverse sequence to the first half of the carrier cycle. The above
equation can be easily programmed for any PWM method and the
space and modulation index dependency of the harmonic flux/current
can be graphically illustrated. Since the inverter hexagon has six-fold
symmetry, only the first segment need be investigated. The duty cycle
of the active states d1 and d2 in this segment are calculated from (9)
and (10). In the direct digital method the zero states are directly de-
fined, while in the triangle intersection method the modulation waves
are utilized to calculate the phase duty cycles from (2). For example,
for R=1 Figure 5 suggests d0 = da� and d7 = dc+ .

Figure 10 illustrates the normalized harmonic flux trajectories which
are calculated from (18) for various modulators and operating condi-
tions. To allow better visualization and clearer harmonic flux trajectory
comparison, only the trajectories in the first half of a carrier cycle are
illustrated in the figure and the second half is always the exact sym-
metric of the first. Figure 10 (a) illustrates the space dependency of the
SPWM method harmonic flux. As the figure indicates, the “0” and “7”
state duty cycles are not always equally split and the varying triangle
shapes indicate the space dependency of the harmonic flux is strong.
Figure 10 (b) compares SVPWM and THIPWM1/4 for two different
angular positions. At wet = 30� the triangles are identical, however
at wet = 15� the triangles have slipped. While SVPWM splits the
zero states equally, the THIPWM1/4 method does slide the triangle
in the direction such that the center of gravity becomes closer to the
origin. Since the distance to the origin is equal to the magnitude of
the harmonic flux, the trajectories which are closer to the origin result
in smaller harmonic flux and the per carrier cycle RMS flux value
decreases[10]. Figures 10 (c) and (d) compare SVPWM and DPWM1
and illustrate that the DPWM method always skips one of the two zero
states. Therefore the DPWM1 flux triangle is quite distant from the
origin. However, increasing the carrier cycle shrinks the triangle size
and brings the weight center of the triangle closer to the origin and
reduces the harmonic flux. When comparing the CPWM and DPWM
modulator performances, to account for the reduction in the number
of per fundamental cycle switchings of the DPWM methods, a carrier
frequency coefficient kf is introduced in the following,

kf =
fsCPWM

fsDPWM
(19)

Employing (18), the per carrier cycle RMS value of the harmonic
flux �1RMS can be closed form calculated. Since the first and the
second halves of the trajectory have the same RMS value due to sym-
metry, calculating only the first is sufficient. Involved calculations
yield the following Mi and duty cycle dependent formula.

�2
1RMS =

Z 1

0

�2
1dd = �2

11 + �2
12 + �2

13 (20)

�2
11 =

�2

18
M 2
i (

1
3
+ d2

0 + d2
1 � d0 � d1 + 2d0d1) (21)
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Fig. 10. The switching frequency harmonic flux trajectories of various PWM
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Employing the above formula, the � andMi dependency of �2
1RMS

of various PWM methods can be easily computed and graphically il-
lustrated. Figure 11 and Figure 12 compare the RMS harmonic flux
characteristics of the modern methods for two modulation index val-
ues. The figures indicate the CPWM methods have lower harmonic
distortion than the DPWM methods and the difference is more pro-
nounced at lowMi . The THIPWM1/4 method, which is the minimum
harmonic distortion method (the optimality condition can be verified
by searching the minimum of (20) with respect to d0 [15]), has only
slightly less distortion than SVPWM and only near the 15� and 45�

range. Since the DPWM methods have a discrete ZSP (0 or 1) and
within certain segments ZSP of various DPWM methods is the same
(see Figure 8). Therefore, calculating the RMS harmonic flux of
DPWM methods is a relatively simple task and �0 = 0 for A and
�0 = 1 for C are the only two functions required to determine the
RMS flux curves of all DPWM methods. The overall comparison
indicates, SVPWM provides superior performance in the low mod-
ulation range, however as Mi increases the performance of DPWM
methods significantly improves and becomes comparable to SVPWM.

As Figures 11 and 12 clearly illustrate the strong space dependency
of the per carrier cycle RMS harmonic distortion characteristics of all
the modern PWM methods, it becomes apparent that performance can
be gained by modulating the carrier frequency. If the carrier frequency
is methodically increased at the high RMS harmonic flux intervals
and reduced at the low harmonic RMS flux intervals, then the over-
all harmonic distortion characteristics can be reduced [22]. Provided
the inverter average switching frequency is maintained constant, the



switching loss characteristics are not affected by the frequency mod-
ulation and performance gain without efficiency reduction becomes
possible. Since the per carrier cycle RMS harmonic flux characteris-
tics are strongly influenced by the modulator zero sequencesignals and
they repeat at the same frequency, the zero sequence signals can aid
in establishing simple frequency modulation signals and simple im-
plementations result [16]. Since the frequency modulation techniques
are most beneficial to modulators with strongly space dependent RMS
harmonic flux characteristics, CPWM methods are most suitable can-
didates than DPWM methods for this approach. In addition to reducing
the RMS harmonic distortion and the peak ripple current, the frequency
modulation techniques also flatten the inverter output voltage/current
harmonic spectrum. Therefore, they are suitable for high power qual-
ity applications that require a flat harmonic spectrum with no dominant
harmonic content.
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Fig. 11. The space dependency of the per carrier cycle normalized RMS har-
monic flux of the modern PWM methods for Mi = 0:4.
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Since it determines the waveform quality and harmonic losses, the
per fundamental cycle RMS value �1FRMS of the harmonic flux is
the most important performance characteristic of a modulator. Since
the �2

1RMS characteristics of the modern PWM methods have sixfold

space symmetry, the per fundamental cycle (per 60� in space) RMS
harmonic flux value can be calculated in the following.

�2
1FRMS =

3
�

Z �

3

0

�2
1RMSd� (24)

For each modulator, the above integral yields a polynomial function
of Mi with unique coefficients and it can be written in the following
Mi dependent Harmonic Distortion Function (HDF) formula.

�2
1FRMS =

�2

288
HDF =

�2

288
(amMi

2 + bmMi
3 + cmMi

4)(25)

Calculating am, bm, and cm of each modulator involves significant
algebraic manipulations. The resulting HDF functions of the discussed
modulators are summarized in the following.
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As was shown in Figures 11 and 12, the harmonic flux of DPWM
methods consists of a combination of the A, B, C, and D segments.
A and B yield equivalent distortion, likewise do C and D. Therefore,
calculating the HDF of A-B (HDFDMAX) and C-D (HDFDMIN ) is
sufficient in determining the performance of all the DPWM methods
discussed. The results are as follows.
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For the same carrier frequency the DPWM methods have less
switchings per fundamental cycle than the CPWM methods, there-
fore to illustrate the carrier frequency effect, kf is included in the HDF
formulas of the DPWM methods.

HDFDPWM1 = kf
2 � HDFDMAX (32)

HDFDPWM3 = kf
2 � HDFDMIN (33)

HDFDPWM0 = kf
2 � 0:5� (HDFDMIN + HDFDMAX) (34)

HDFDPWM2 = HDFDPWMMIN = HDFDPWMMAX = HDFDPWM0 (35)

The relation between HDF and the per phase harmonic current RMS
value Ih for a load with a transient inductanceL� , which can be utilized
in calculating the harmonic copper losses, is as follows.

I2
xh = (

Vdc

24L�fs
)

2

� HDF(Mi) for x 2 fa; b; cg (36)

Figure 13 shows the HDF curves of all the discussedPWM methods.
In the very low modulation index range all CPWM methods have
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Fig. 13. HDF = f(Mi) curves in the linear modulation range under constant
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practically equalHDF which is superior to all DPWM methods. As the
modulation index increases the SPWM performance rapidly degrades
while the remaining CPWM methods maintain low HDF over a wide
modulation range. The figure indicates the THIPWM1/4 performance
is only slightly better than SVPWM, and the difference is less noticable
than the local differences shown in Figures 10 and 12. In the high
modulation range the DPWM methods are superior to SVPWM (Figure
13) and the intersection point of the DPWM method of choice and
SVPWM defines the optimal transition point. Although in the high
modulation range the DPWM3 method has less HDF than the other
DPWM methods, the improvement is marginal and the modulator
selection criteria can be based on the switching loss characteristics
and voltage linearity characteristics which are stronger functions of
the DPWM methods. The HDF of GDPWM method is  dependent,
and varies between curves 5 and 6 of Figure 13. Its HDF can be
approximated with the average value of (32) and (34).

HDFGDPWM � kf
2 � 0:25� (HDFDMIN + 3HDFDMAX) (37)

Since the HDF of each PWM method is unique, the switching
frequency harmonic spectrum of each method is also unique. Since
the DPWM methods have two less switchings per carrier cycle than
CPWM methods, the side band harmonics of the DPWM methods are
wider and larger in magnitude. Calculating the individual harmonics
and the peak ripple current is involved and will be omitted herein.
Having illustrated the superior high modulation range waveform qual-
ity characteristics of the DPWM methods over SVPWM, in the next
section the switching losses of DPWM methods will be characterized
to aid an intelligent modulator choice. Following a brief section on the
inverter input current harmonics, the switching losses of the DPWM
methods will be analytically modeled and their performance evaluated.

V. INVERTER INPUT CURRENT HARMONICS

The DC link input current of a PWM inverter Iin consists of the DC
average value Idc which corresponds to the average power transfer to
the load, and switching frequency component Iinh, which is due to
PWM switching. Since during the zero states the DC link is decoupled
from the AC load, the RMS value of the ripple current IinhRMS ,
which is required in DC link capacitor design and loss calculations, is
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Fig. 14. Normalized inverter input harmonic current RMS value characteristics
KIin = f(Mi) of PWM-VSI for cos' as parameter.
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independentof the zero sequencesignal and therefore of the modulator
type. Since the duty cycles of the inverter active states are independent
of the carrier frequency, IinhRMS is also independent of the carrier
frequency. Similar to the inverter output current harmonic RMS current
calculation, IinhRMS can also be easily calculated by establishing a
per carrier cycle RMS value formula and evaluating it over an inverter
segment [20]. The calculation yields the following Mi , load power
factor (cos') and load current fundamental component RMS value
(I1RMS) dependent DC link current ripple factorKIin formula.

KIin =
I2
inhRMS

I2
1RMS

=
2
p

3
�2

Mi + (
8
p

3
�2
� 18
�2
Mi)Micos2 ' (38)

Figure 14 illustrates the Mi and and cos' dependency of theKIin

factor. The maximum ripple occurs at cos' = 1 and at Mi = 5
p

3
18 �

0:48 (a reasonable design point for capacitor sizing) and the ripple is
independent of cos' at Mi = 8

p
3

18 � 0:77.

VI. SWITCHING LOSSES

The switching losses of a PWM-VSI drive are load current depen-
dent and increase with the current magnitude (approximately linearly).
With CPWM methods, all the three phase currents are commutated
within each carrier cycle of a full fundamental cycle. Therefore, for
all CPWM methods the switching losses are the same and indepen-
dent of the load current phase angle. With DPWM methods, however,
the switching losses are significantly influenced by the modulation
method and load power factor angle. Because, DPWM methods cease
to switch each switch for a total of 120� per fundamental cycle and
the location of the unmodulated segments with respect to the modula-
tion wave fundamental component phase is modulator type dependent.
Therefore, the load power factor and the modulation method together
determine the time interval that the load current is not commutated.
Since the switching losses are strongly dependenton and increase with
the magnitude of the commutating phase current, selecting a DPWM
method with reduced switching losses can significantly contribute to
the performance of the drive. Therefore, it is necessary to characterize
and compare the switching losses of DPWM methods.

Assuming the inverter switching devices have linear current turn-on
and turn-off characteristics with respect to time and accounting only for
the fundamental componentof the load current, the switching losses of
a PWM-VSI drive can be analytically modeled [9]. Shown in Figure
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15, the single phase inverter model and the switching voltage/current
diagram aid calculating the switching losses. Deriving the local (per
carrier cycle) switching loss formula and calculating its average value
over the fundamental cycle, the per fundamental cycle inverter per
device switching loss Pswave can be calculated as follows.

Pswave =
1

2�
Vdc(ton + toff )

2Ts

Z 2�

0

fi(�)d� (39)

In the above formula, ton and toff variables represent the turn-on
and turn-off times of the switching devices, and fi(�) is the switching
current function. The switching current function fi(�) equals zero in
the intervals where modulation ceases and the absolute value of the
corresponding phase current value elsewhere. As a result, the phase
current power factor angle' enters the formula as the integral boundary
term and ' dependent switching loss formula yields. Normalizing
Pswave to Po, the switching loss value under CPWM condition (which
is ' independent), the Switching Loss Function (SLF) of a modulator
can be found.

Po =
VdcImax

�Ts
� (ton + toff ) (40)

SLF =
Pswave

Po
(41)

In (40) the variable Imax represents the load current fundamental
component maximum value. By the definition of (41), the SLF of
CPWM methods is unity. The SLF of the DPWM methods can be
easily calculated from the current switching function. Figure 16 shows
the and' dependent switching loss function waveforms of GDPWM.
Applying the procedure to GDPWM yields the following SLF [16].

SLFGDPWM =

( p
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The SLF function of the DPWM0, DPWM1, and DPWM2 can be
easily evaluated from (42) by substituting = 0,  = �

6 , and = �
3 .

The SLF of the remaining DPWM methods are as follows.
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SLFDPWMMAX = SLFDPWMMIN (44)
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Although the absolute switching loss values obtained from (39) may
have limited accuracy due to unmodeled switching device characteris-
tics, the relative switching losses which are represented with the SLF
function are always predicted with higher accuracy. Since the SLF
derivation assumes the same device characteristics both in Pswave and
Po, the error direction is the same in both terms and therefore the rela-
tive error is reduced. The SLF functions are powerful analytical tools
for evaluating and comparing the switching losses of various DPWM
methods.

Figure 17 shows the SLF characteristics of the modern DPWM
methods along with the minimum SLF solution the GDPWM method
yields. The optimal solution of GDPWM is obtained by selecting
 = �

6 +' for��
6 � ' � �

6 [18]. Outside this range, the modulator
phaseangle must be held at the boundaryvalue of = �

3 for positive'
(DPWM2) and at the value of  = 0 for negative ' (DPWM0) so that
the GDPWM voltage linearity is retained. Note that outside the� 5�

12 �
' � 5�

12 range DPWM3 yields minimum switching losses. As Figure
17 indicates, the switching losses of DPWM methods strongly depend
on ' and can be reduced to 50% of the CPWM methods. Therefore,
the SLF characteristics are as important as the HDF characteristics in
determining the performance of a modulator.

VII. OVERMODULATION AND VOLTAGE GAIN

In the triangle intersection PWM technique, when the modulation
wave magnitude becomes larger than the triangular carrier wave peak
value, �Vdc

2 , the inverter ceases to match the reference per carrier
cycle volt-seconds, and a nonlinear reference-output voltage relation
results within certain intervals. SPWM’s linear modulation range
ends at V �1m = Vdc

2 i.e. a modulation index of MLSPWM = �
4 �

0:785. Injecting a zero sequencesignal to the SPWM signal can flatten
and contain the modulation wave within �Vdc

2 such that the linearity
range is extended to at most MLmax = �

2
p

3
� 0:907 which is the

theoretical inverter linearity limit [4, 5, 16]. With the exception of
THIPWM1/4 which looses linearity at MLTHIPWM1=4 = 3

p
3

7
p

7
� �

0:881, all the discussed zero sequence injection PWM methods are
linear until MLmax .
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In the direct digital technique, when the reference voltage vector
falls outside the modulator linearity region, (11) yields t0 + t7 � 0,
indicating the reference volt-seconds can not be matched by the in-
verter and a volt-second error is inevitable. Shown in Figure 18, the
complex plane linearity boundaries of the modern modulators cor-
respond to hexagons. The outer hexagon is the inverter theoretical
linearity limit and with the exception of SPWM, THIPWM1/4, and
THIPWM1/6 all the discussed PWM methods (direct digital or tri-
angle intersection based) are linear inside the hexagon. The SPWM
linearity limit is shown in the same diagram with the internal hexagon.
The per fundamental component linearity boundaries of these modu-
lators are illustrated with circles which touch the inner boundaries of
the hexagons. Figure 19 illustrates the per carrier cycle voltage limits
of all the modern PWM methods in detail. The THIPWM1/6 method
has elliptic boundaries, while the THIPWM1/4 linearity boundaries
resemble the shape of a star with twelve edges [16].
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of a modulator until the six-step operating point (Mi = 1) is called
the overmodulation region. All the PWM-VSI drives experience per-
formance degradation in the overmodulation region and operating in
this region is often problematic [16, 23, 24, 25, 26]. The output
voltage waveform quality degrades (subcarrier frequency harmonics
are generated) and the voltage becomes increasingly smaller than the
reference. However, the overmodulation issues of the closed loop
(current controlled) PWM-VSI drives with high dynamic performance
requirements, and the open loop (V

f
= const:) drives are significantly

different [16, 25].

In high dynamic performance applications, the per carrier cycle
volt-second errors should be minimized to manipulate a dynamic con-
dition as fast as possible[24]. Therefore the reference-output voltage
vector relations influence the dynamic overmodulation performance
of a drive. Reference [24] studies the direct digital PWM issues while
[27] analytically models the triangle intersection PWM modulator dy-
namic overmodulation characteristics in detail.

In open loop drives, the dynamic performance requirements are not
stringent, however high per fundamental cycle (steady state) perfor-
mance must be obtained. Correct per fundamental cycle volt-seconds
and low harmonic distortion is desirable. However, due to saturation
the output voltage fundamental component is smaller than the refer-
ence and as the modulation index increases the voltage gain rapidly
decreases and the subcarrier frequency harmonic content rapidly in-
creases. Both the per fundamental component voltage gain and the
subcarrier frequency harmonic characteristics of each modulator are
unique. Both characteristics of trangle intersection [16, 25, 26] and
direct digital PWM [23] implementations have been recently investi-
gated in detail and will not be pursued in this paper.

The dynamic and steady state overmodulation analytical tools estab-
lished in the suggested literature are complimentary parts of the PWM
toolbox developed in this paper and could aid the PWM education as
well as the practical design and performance evaluation.



VIII. CONCLUSIONS

Simple and powerful analytical and graphical carrier based PWM tools
have been developed. These tools were utilized to illustrate and com-
pare the performance characteristics of various PWM methods. The
switching loss and waveform quality comparisons indicate SVPWM
at low modulation and DPWM methods at the high modulation range
have superior performance. The tools and graphics aid the modula-
tor selection and PWM inverter design process. The magnitude test
is an elegant method for generating the modulation waveforms fast
and accurately by digital hardware/software or analog hardware. The
analytical tools are also helpful in generating graphics of the micro-
scopic current ripple characteristics and illustrating the performance
characteristics and the difference between various modulators. There-
fore, they aid visual learning. As a result, the paper helps the PWM
learning and design experience become simple and intuitive.
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