
Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

43

 
 
 
 

CHAPTER III 
 

Neural Networks as Associative 
Memory  

 
One of the primary functions of the brain is associative memory. We associate the 
faces with names, letters with sounds, or we can recognize the people even if they 
have sunglasses or if they are somehow elder now. 
 
Associative memories can be implemented either by using feedforward or recurrent 
neural networks. Such associative neural networks are used to associate one set of 
vectors with another set of vectors, say input and output patterns. The aim of an 
associative memory is, to produce the associated output pattern whenever one of the 
input pattern is applied to the neural network. The input pattern may be applied to the 
network either as input or as initial state, and the output pattern is observed at the 
outputs of some neurons constituting the network. According to the way that the 
network handles errors at the input pattern, they are classified as interpolative and 
accretive memory. In the interpolative memory it is allowed to have some deviation 
from the desired output pattern when added some noise to the related input pattern. 
However, in accretive memory, it is desired the output to be exactly the same as the 
associated output pattern, even if the input pattern is noisy. Another classification of 
associative memory is such that while the memory in which the associated input and 
output patterns differ are called heteroassociative memory, it is called autoassociative 
memory if they are the same. 
 
In this chapter, first the basic definitions about associative memory is given and then 
it is explained how neural networks can be made linear associators so as to perform as 
interpolative memory. Next it is explained how the Hopfield network can be used as 
autoassociative memory and then Bipolar Associative Memory network, which is 
designed to operate as heteroassociative memory, is introduced.  
 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

44

 
3.1. Associative Memory 
 
In an associative memory, we store a set of patterns µk, k=1...K, so that the network 
responds by producing whichever of the stored patterns most closely resembles the 
one presented to the network  
 

Here we need a measure for defining resemblance of the patterns. For this purpose the 
norms that were introduced in Section 2.1 may be used. While Euclidean distance is 
convenient for the continuous valued pattern vectors, Hamming distance, which gives 
the number of mismatched components, is more appropriate for patterns with binary 
or bipolar entries. 
 
Suppose that the stored patterns, which are called exemplars or memory elements, are 
in the form of pairs of associations, µk=(uk,yk), uk∈RN, yk∈RM, k=1..K. According to 
the mapping ϕ: RN→RM that they implement, we distinguish the following types of 
associative memories: 
 
• Interpolative associative memory: when u=ur is presented to the memory it 
responds by producing yr of the stored association. However if u differs from ur by 
an amount of ε, that is if u=ur+ε is presented to the memory, then the response differs 
from yr by some amount εr. Therefore in interpolative associative memory we have  
  
 Kkthatsuch rrrr ..1,)( ==⇒=+= 00yu εεεεϕ +  (3.1.1)

  
• Accretive associative memory: when u is presented to the memory, it responds by 
producing yr of the stored association such that ur is the one closest to u among uk, 
k=1..K, that is,  
 
 

k

rr thatsuch
u

uyu min)( ==ϕ || uk - u ||, k=1..K   (3.1.2)

  

The accretive associative memory in the form given above is called heteroassociative 
memory. However if the stored exemplars are in a special form such that the desired 
patterns and the input patterns are the same, that is yk=uk for k=1..K, then it is called 
autoassociative memory. In such a memory, whenever u is presented to the memory 
it responds by ur which is the closest one to u among uk, k=1..K, that is,  
 
 

k

rr thatsuch
u

uuu min)( ==ϕ || uk - u ||  k=1..K  (3.1.3) 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

45

 
While interpolative memories can be implemented by using feed-forward neural 
networks, it is more appropriate to use recurrent networks as accretive memories. 
 
The advantage of using recurrent networks as associative memory is their 
convergence to one of a finite number of stable states when started at some initial 
state. The basic goals are : 
 
• to be able to store as many exemplars as we need, each corresponding to a 

different stable state of the network,  
• to have no other stable state 
• to have the stable state that the network converges to be the one closest to the 

applied pattern 
 
The problems that we are faced with being: 
 
• the capacity of the network is restricted, 
• depending on the number and properties of the patterns to be stored, some of the 

exemplar may not be the stable states, 
• some spurious stable states different than the exemplars may arise by themselves  
•    the converged stable state may be other than the one closest to the applied pattern 
 
One way of using recurrent neural networks as associative memory is to fix the 
external input of the network and present the input pattern ur to the system by setting 
x(0)=ur. If we relax such a network, then it will converge to the attractor x* for which 
x(0) is within the basin attraction as explained in Section 2.7. If we are able to place 
each µk as an attractor of the network by proper choice of the connection weights, 
then we expect the network to relax to the attractor x*=µr that is related to the initial 
state x(0)=ur. For a good performance of the network, we need the network to 
converge only to one of the stored patterns µk, k=1...K. Unfortunately, some initial 
states may converge to spurious states, which are the undesired attractors of the 
network representing none of the stored patterns. Spurious states may arise by 
themselves depending on the model used and the patterns stored. The capacity of the 
neural associative memories is restricted by the size of the networks. If we increment 
the number of stored patterns for a fixed size neural network, spurious states arise 
inevitably. Sometimes, the network may converge not to a spurious state, but to a 
memory pattern not so close to the presented pattern. What we expect for a feasible 
operation is, at least for the stored memory patterns themselves, if any of them is 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

46

presented to the network by setting x (0)= µk , then the network should stay 
converged to x*=µr (Figure 3.1). 
 

Figure 3.1 In associative memory each memory element is assigned to an attractor 

 
A second way to use recurrent networks as associative memory, is to present the input 
pattern ur to the system as an external input. This can be done by setting θ=ur, where 
θ is the threshold vector whose ith component is corresponding to the threshold of 
neuron i. After setting x(0) to some fixed value we relax the network and then wait 
until it converges to an attractor x*. For a good performance of the network, we desire 
the network to have a single attractor such that x*=µk for each stored input pattern uk, 
therefore the network will converge to this attractor independent of the initial state of 
the network. Another solution to the problem is to have predetermined initial values, 
so that these initial values lie within the basin attraction of µk whenever uk is applied. 
We will consider this kind of networks in Chapter 7 in more detail, where we will 
examine how these recurrent networks are trained. 
 
 
3.2 Linear Associators as Interpolative Memory 
 
It is quite easy to implement interpolative associative memory when the set of input 
memory elements {uk} constitutes an othonormal set of vectors, that is 
 

 u ui j i j
i j

⋅ =
=
≠

1
0

 (3.2.1) 

 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

47

By using kronecker delta, we write simply 
 
 ui .uj =δij (3.2.2) 

 
The mapping function ϕ(u) defined below may be used to establish an interpolative 
associative memory: 
 
 ϕ ( )u W u= T  (3.2.3) 

 
where T denotes transpose and  
 
 W u y= ×∑ k k

k
 (3.2.4) 

 
Here the symbol × is used to denote outer product of  x∈RN and y∈RM, which is 
defined as 
 
 T)(

Tkkkkkk uyyuyu ==×
T

, (3.2.5) 

 
resulting in a matrix of size N by M. 
 
By defining matrices [Haykin 94]: 
 
 U=[u1 u2.. uk.. uK] (3.2.6) 
and  
 Y=[y1 y2.. yk.. yK] (3.2.7) 

 
the weight matrix can be formulated as 
 
 W YUT T=  (3.2.8) 

 
If the network is going to be used as autoassociative memory we have Y=U so,  
 
 W UUT T=  (3.2.9)     

 
For a function ϕ(u) to constitute an interpolative associative memory, it should satisfy 
the condition  
 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

48

 ϕ(ur)=yr  for r=1..K (3.2.10) 
 
We can check it simply as 
 
 ϕ ( )u W ur r= T    (3.2.11) 
 
which is  
 
 W u YU uT Tr r=  (3.2.12) 
 
Since the set {uk} is orthonormal, we have 
 
 rk

k
kr

r yyuYU == ∑δT  (3.2.13) 

which results in 
 
 ϕ ( )u YU u yr r r= =T  (3.2.14)
   
as we desired. 
 
Furthermore, if an input pattern u=ur+ε different than the stored patterns is applied as 
input to the network, we obtain 
 

 
ϕ ε

ε

( ) ( )u W u

W u W

= +

= +

T

T T

r

r
 (3.2.15) 

 
Using equation (3.2.12) and (3.2.13) results in 
 
 ϕ ε( )u y W= +r T  (3.2.16) 

 
Therefore, we have 
 
 ϕ ε( )u y= +r r  (3.2.17) 
 
in the required form, where 
 
 ε εr= WT  (3.2.18) 

 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

49

Such a memory can be implemented as shown in Figure 3.2 by using M neurons each 
having N inputs. The connection weights of neuron i is assigned value Wi, which is 
the ith column vector of matrix W. Here each neuron has a linear output transfer 
function f(a)=a. When a stored pattern uk is applied as input to the network, the 
desired value yk is observed at the output of the network as: 
 
 x W uk k= T  (3.2.19) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Linear Associator 
 
Until now, we have investigated the use of linear mapping YUT as associative 
memory, which works well when the input patterns are orthonormal. In the case the 
input patterns are not orthonormal, the linear associator cannot map some input 
patterns to desired output patterns without error. In the following we will investigate 
the conditions necessary to minimize the output error for the exemplar patterns. That 
is, for a given set of exemplars µk=(uk,yk), uk∈RN, yk∈RM, k=1.. K, our purpose is to 
find a linear mapping A* among A: RN→RM such that: 
 
 A

A
* min= ∑

k
|| yk - Auk ||  (3.2.20) 

 
where ||.|| is chosen as Euclidean norm. 
 
The problem may be reformulated by using the matrices U and Y [Haykin 94]:  
 
 A

A
* min= || Y - AU ||  (3.2.21) 

1 2 i M

output layer

input layer

u u u u1 2 N j 

x 1 x 1 x i x M

W



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

50

 
The pseudo inverse method [Kohonen 76] based on least squares estimation provides 
a solution for the problem in which A* is determined as: 
 
 A YU* = +  (3.2.22)  
 
where U+ is pseudo inverse of U. 
 
The pseudoinverse U+ is a matrix satisfying the condition: 
 
 U U 1+ =  (3.2.23) 
 
where 1 is the identity matrix. A perfect match is obtained by using A YU* = + , since  
 
 A U YU U Y* = =+  (3.2.24) 
 
resulting in no error due to the fact 
 
 || Y - A*U|| = 0 (3.2.25) 
 
In the case the input patterns are linearly independent, that is none of them can be 
obtained as a linear combinations of the others, then a matrix U+ satisfying Eq. 
(3.2.23) can be obtained by applying the formula [Golub and Van Loan 89, Haykin 
94] 
 
 U U U U+ −= ( )T T1  (3.2.26) 

 
Notice that for the input patterns, which are the columns of the matrix U, to be 
linearly independent, the number of columns should not be more than the number of 
rows, that is K N≤ , otherwise UTU will be singular and no inverse will exist. The 
condition K N≤  means that the number of entries constituting the patterns restricts 
the capacity of the memory. At most N patterns can be stored in such a memory. 
 
This memory can be implemented by a neural network for which WT=YU+ . The 
desired value yk appears at the output of the network as xk when uk is applied as 
input to the network: 
 
 x W uk k= T  (3.2.27) 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

51

 
as explained in the previous section. 
 
Notice that for the special case of orthonormal patterns that we examined previously 
in this section, we have 
 
 U U 1T =  (3.2.28) 
 
that results in the pseudoinverse, which is in the form 

 
 U U+ = T  (3.2.29) 
 
and therefore 
 
 W YUT T=  (3.2.30) 
 
as we have derived previously.  
 
 
3.3. Hopfield Autoassociative Memory 
 
In section 2.9 we have examined continuous input, continuous time Hopfield network. 
In this section we will investigate how Hopfield network can be used as 
autoassociative memory. For this purpose some modifications are done on it so that it 
works in discrete state space and discrete time. When discrete Hopfield network was 
introduced as associative memory in [Hopfield 82] it had attracted a great attention. In 
[Hopfield 84] it is shown that many important characteristics of the discrete and 
continuos deterministic models are closely related (Figure 3.3)  
 

 

 

 

 

 

 

 

 

Figure 3.3 Hopfield Associative Memory 

1 2 ji N

x

f(a)

a
θ θ θ θ θ 1 2 i j N 

x 
2 

x 
1 xi x

j x
N 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

52

 
 
Note that, whenever the patterns to be stored in Hopfield network are from N 
dimensional bipolar space constituting a hypercube, that is uk∈{-1,1}N, k=1..K, then 
it is convenient to have any stable state of the network on the corners of the 
hypercube. For this purpose refer to the output transfer function given by Eq. (2.9.3) 
and to Figure 2.7 for different values of the gain. If we let the output transfer function 
of the neurons in the network to have a very high gain, in the extreme case  
 
 f a ai ( ) lim tanh( )=

→∞κ
κ   (3.3.1) 

 
we obtain 
 

 
f a a

for a
for a
for a

i ( ) sign( )= =
>
=

− >

1 0
0 0

1 0
        (3.3.2) 

Furthermore note that the second term of the energy function given by Eq. (2.9.7) that 
we repeat here for convenience: 
 

 i

N

i
i

N

i

x

R

N

i

N

j
ijji xdxxfxxwE i

i ∑∑ ∫∑∑
=

−

== =

−+−=
1

1

1
0

1

1 1
)(

2
1 θ  (3.3.3) 

 
approaches to zero. Therefore the stable states of the network corresponds to the local 
minima of the function: 
 

 ∑∑∑ −−=
i

iii
j

jji
i

xxxwE θ
2
1  (3.3.4) 

 
so that they lie on the corners of the hypercube as explained previously. 
 
In section 2.10, we have derived the discrete time approximation for continuous time 
Hopfield network described in section 2.9. However in this section we investigate a 
special case of the Hopfield network where the stable states of the network are forced 
to take discrete values in bipolar state space. Knowing in advance that the local 
minima of the energy function should take place at the corners of the N dimensional 
hypercube, we can get rid of the slow convergence problem due to small value of η. 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

53

For this purpose a discrete state excitation [Hopfield 82] of the network, is provided 
in the following: 
 
 

 x k f a k
for a k

x k for a k
for a k

i i

i

i

i

( ) ( ( ))
( )

( ) ( )
( )

+ = =

>

=
− >

1
1 0

0
1 0

      (3.3.5)   

 
where ai(k) is defined in a manner similar to that we used to: 
 
 a k w x ki ji

j
j i( ) ( )= +∑ θ  (3.3.6) 

 
The processing elements of the network are updated one at a time, such that all of the 
processing elements must be updated at the same average rate. 
 
Note that, for any vector x having bipolar entries, that is xi∈{-1,1}, we obtain the 
vector itself if we apply the function defined by Eq. (3.3.5) on it, that is 
 
 f(x)=x  (3.3.7) 
 
Here f is used to denote the vector function such that the function f is applied at each 
entry. 

 
For stability of the discrete Hopfield network, it is further required wii=0 in addition 
to the constraint wij=wji 
 
In order to use discrete Hopfield network as autoassociative memory, its weights are 
fixed to 
 
 W UUT T=  (3.3.8) 
 
 where U is the input pattern matrix as defined in Eq. (3.2.6). Remember that in 
autoassociative memory we have Y=U, where Y is the matrix of desired output 
patterns as defined in Eq (3.2.7). For the stability of the network, the diagonal entries 
of W is set to 0, that is wii=0, i=1..N 
 
If all the states of the network are to be updated at once, then the next state of the 
system can be represented in the form 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

54

 
 x(k+1)=f(WTx(k)) (3.3.9) 

 
For the special case if the exemplars are orthonormal, then due to fact indicated by 
Eqs. (3.3.7) and (3.2.13) we have 
 
 f(WTur)=f(ur)=ur (3.3.10) 
 
that means each exemplar is a stable state of the network. Whenever the initial state is 
set to one of the exemplar, the system remains there. However, if the initial state is set 
to some arbitrary input, then the network converges to one of the stored exemplars, 
depending on the basin of attraction in which x(0) lies.  
  
However, in general, the input patterns are not orthonormal, so there is no guarantee 
that each exemplar is corresponding to a stable state. Therefore the problems that we 
mentioned in Section 3.1 arise. The capacity of the Hopfield net is less than 0.138N 
patterns, where N is the number of units in the network [Lippmann 89]. 
 
In the following we will show that the energy function always decreases as the state 
of the processing elements are changed one by one. Notice that: 
 

 

)()()(
2
1

)1()1()1(
2
1

))(())1((

kxkxkxw

kxkxkxw

kEkEE

i
iii

j
jji

i

i
iii

j
jji

i

∑∑∑

∑∑∑

++

+−++−=

−+=∆

θ

θ

xx

 (3.3.11) 

 
Assume that the neuron that just changes state at step k is neuron p. Therefore xp(k+1) 
is determined by equation 3.3.5 and for all the other neurons we have xi(k+1)=xi(k), i≠
p. Furthermore we have wpp=0. Hence,  
 
 ∆E x k x k w x kp p jp j

j
p= − + − +∑(( ( ) ( ))( ( )) )1 θ  (3.3.12) 

that is, 
 
 ∆E x k x k a kp p p= − + −(( ( ) ( )) ( )1  (3.3.13) 

 
Notice that if the value of xp remains the same, then xp(k+1)=xp(k) so ∆E=0. If they 
are not the same, than it is either the case xp(k)= -1 and xp(k+1)=1 due to fact ap(k)>0, 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

55

or xp(k)=1 and xp(k+1)= -1 due to fact ap(k)<0. Whatever the case is, if xp(k+1)≠xp(k) 
it is in a direction for which ∆E<0. Therefore, for discrete Hopfield network we have  
 
 ∆E ≤ 0 (3.3.14) 
 
Because at each state change, the energy function decreases at least by some fixed 
minimum amount, and because the energy function is bounded, it reaches a minimum 
value in a finite number of state changes. So the Hopfield network converges to one 
stable state in finite time in contrary to the asymptotic convergence in the continuous 
Hopfield network. The schedule, in which only one unit of the discrete Hopfield 
network is updated at a time, is called asynchronous update. The other approach in 
which all the units are updated at once is called synchronous update. Although the 
convergence with the asynchronous update mechanism is guaranteed, it may result in 
a cycle of length two in synchronous update.  
 
It should be noted that, the continuous deterministic model implies the possibility of 
implementing the discrete network in actual hardware because of the close relation 
between discrete and continuous models. However, the discrete model is often 
implemented through computer simulations because of its simplicity.  
 
Exercise: Explain how can we use the Hopfield network as autoassociative memory if 
the states are not from bipolar space {-1,1}N but from binary space{0,1}N . 
 
 
3.4. Bi-directional Associative Memory  
 
The Bi-directional Associative Memory (BAM) introduced in [Kosko 88] is a 
recurrent network (Figure 3.4) designed to work as heteroassociative memory 
[Nielsen 90]. BAM network consists of two sets of neurons whose outputs are 
represented by vectors x ∈ RN and v∈RM respectively, having activation defined by 
the pair of equations: 
 
 

 Miforafwa
dt

da
i

N

j
vjixi

x
ji

i ..1)(
1

=++−= ∑
=

θα  (3.4.1) 

  

 Njforafwa
dt

da
j

M

i
xijyj

v

ij

j ..1)(
1

=++−= ∑
=

φβ  (3.4.2) 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

56

  
where αi, βj, θi, φj are positive constants for all i=1..M, j=1..N, f is sigmoid function 
and W=[wij] is any N×M real matrix.  
 

The stability of the BAM network can be proved easily by applying Cohen-Grossberg 
theorem on the state vector z∈RN+M  defined as  
 

   
NMiMMijv

Mix
z

j

i
i +≤<−=

≤
=

,
 (3.4.3) 

 
that is z obtained through concatenation x and v. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Bi-directional Associative Memory 
 
Since BAM is a special case of the network defined by Cohen-Grossberg theorem, it  
has a Lyapunov Energy function as it is provided in the following: 
 

 

j

N

j
ji

M

i
i

a

i

N

j

a

i

M

i

vxij

N

j

M

i

vfxf

dbbbfdaaaf

afafwE

ivix

ji

φθ

βα

)()(

)()(

)()(),(

11

0
1

0
1

11

∑∑

∫∑∫∑

∑∑

==

==

==

−−

′+′+

−=vx

 (3.4.4) 

 
The discrete BAM model is defined in a manner similar to discrete Hopfield network. 
The output functions are chosen to be f(a)=sign(a) and states are excited as: 

x layer 

v layer 

W 

1 2 i M

Nj 21 



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

57

 

 x k f a k
for a k

x k for a k
for a k

i x i

x i

x i

x i

( ) ( ( ))
( )

( ) ( )
( )

+ = =

>

=

− <

1
1 0

0
1 0

 (3.4.5) 

 
 

 v k f a k

for a k

v k for a k

for a k
j v j

v j

v j

v j

( ) ( ( ))

( )

( ) ( )

( )

+ = =

>

=

− <

1

1 0

0

1 0

 (3.4.6) 

 
where 
 

 Miforafwa i

N

j
vjix ji

..1)(
1

=+= ∑
=

θ  (3.4.7) 

and 

 Njforafwa j

N

i
xijv ij

..1)(
1

=+= ∑
=

φ . (3.4.8) 

 
or in compact matrix notation it is shortly 

 
 x(k+1)=f (WTv(k))  (3.4.9) 
 
and 
 
 v(k+1)=f(Wx(k)). (3.4.10) 

 
In the discrete BAM, the energy function becomes  
 

 

j

N

j
vi

M

i
x

vxij

N

j

M

i

ji

ji

afaf

afafwE

φθ )()(

)()(),(

11

11

∑∑

∑∑

==

==

−−

−=yx
 (3.4.11) 

 
satisfying the condition 
 
 ∆E ≤ 0 (3.4.12) 

 
which implies the stability of the system. 
 
The weights of BAM is determined by the equation  



Ugur HALICI                               ARTIFICIAL NEURAL NETWORKS                           CHAPTER 3 
 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                              
 

58

 
 WT=YUT (3.4.13) 

 

For the special case of orthonormal input and output patterns we have 
 
 f(WTur)= f(YUTur)=f(yr)=yr (3.4.14) 
and 
 
 f(Wyr)= f(UYTyr)=f(ur)=ur (3.4.15) 
 
indicating that exemplars are stable states of the network. Whenever the initial state is 
set to one of the exemplar, the system remains there. For arbitrary initial states the 
network converges to one of the stored exemplars, depending on the basin of 
attraction in which x(0) lies.  
  
For the input patterns that are not orthonormal, the network behaves as it is explained 
for the Hopfield network. 
 
Exercise: Compare the special case U=Y of BAM with Hopfield Autoassociative 
memory. 
 
 


