MATH538 - ALGEBRAIC TOPOLOGY-II - SPRING 2018 Take-Home Final Exam

Due: June 1, 2018

Q1. The *join* of two topological spaces X and Y is the space

 $X \ast Y \doteq X \times Y \times [0,1] \nearrow_{\sim}$

where the identifications are as follows: $(x, y, 0) \sim (x, y', 0)$ for all $x \in X$ and $y, y' \in Y$, and $(x, y, 1) \sim (x', y, 1)$ for all $x, x' \in X$ and $y \in Y$. Show that for any n > 1 the homology groups satisfy

 $H_n(X * Y) \cong H_{n-1}(X \times Y, X \vee Y).$

Q2. Compute the cohomology ring structure of Σ_g , the orientable surface of genus $g \geq 2$.

Q3. Assume M is a closed and connected manifold of dimension n. Show that:

- (a) If M is orientable, then $H_{n-1}(M,\mathbb{Z})$ is torsion free.
- (b) If M is non-orientable, then $H_n(M, \mathbb{Z}_k) = 0$ if k is odd.
- (c) If M is non-orientable, then the torsion subgroup of $H_{n-1}(M, \mathbb{Z})$ is isomorphic to \mathbb{Z}_2 .
- (d) If M is non-orientable, $H_1(M, \mathbb{Z}_2)$ is non-trivial.

[Hint: What is an R-orientation on a manifold for a given commutative ring R with identity? Our textbook might be useful!]

Q4. Prove that \mathbb{CP}^{538} can not be the boundary of a compact manifold of (real) dimension 1077.