MATH538 - ALGEBRAIC TOPOLOGY II - SPRING 2018 HOMEWORK 3

Due: April 25, 2018

Q1. Compute the cohomology ring structure of $H^*(T^n; Z)$ where

$$T^n = S^1 \times S^1 \cdots \times S^1$$

(n factors) is the *n*-torus.

Q2. Show that if a topological space is a union of two contractible sets, then for any two cohomology classes of positive degrees, their cup product vanishes.

Q3. Let X be any topological space, and let $t_0 \in S^1$ be a point on the unit circle. Prove, for each i, that the connecting homomorphism

$$\delta: H^{i}(X \times \{t_{0}\}; R) \longrightarrow H^{i+1}(X \times S^{1}, X \times \{t_{0}\}; R)$$

in the long exact sequence of the pair $(X \times S^1, X \times \{t_0\})$ is trivial for any coefficient ring R.

Q4. Show that for any map $f: S^4 \to S^2 \times S^2$, the induced map in the integral homology $f_*: H_4(S^4) \to H_4(S^2 \times S^2)$ is trivial.