MATH538 - ALGEBRAIC TOPOLOGY II - SPRING 2018
 HOMEWORK 2

Due: April 04, 2018
Q1. Let X be the space obtained by attaching two discs to S^{1}, where the first disk D_{1} is attached via the map $\partial D_{1}=S^{1} \rightarrow S^{1}$ given by $z \rightarrow z^{4}$ and the second disk D_{2} is attached via the map $\partial D_{2}=S^{1} \rightarrow S^{1}$ given by $z \rightarrow z^{7}$. (Here we consider $S^{1} \subset \mathbb{C}$ and z is the coordinate on \mathbb{C}.)
(a) Compute the integral homology groups of X.
(b) Compute the cohomology groups of X with \mathbb{Z}_{2}-coefficients.
(c) Compute the relative cohomology groups $H^{*}\left(X, S^{1} ; \mathbb{Z}_{2}\right)$.
(d) Is X homeomorphic to S^{2} ? Explain?

Q2. Let $p>1, q$ be relatively prime positive integers, and let $L(p, q)$ denote the Lens space obtained by gluing the boundaries of two solid tori

$$
T_{1} \approx S^{1} \times D^{2}, \quad T_{2} \approx S^{1} \times D^{2}
$$

together such that the meridian curve of T_{1} (i.e., the circle $\{p t\} \times \partial D^{2}$ on ∂T_{1}) goes to a (p, q)-curve on ∂T_{2}, where a (p, q)-curve wraps around the longitude curve (i.e., the circle $S^{1} \times\{p t\}$ on $\left.\partial T_{2}\right) p$ times and around the meridian on $\partial T_{2} q$ times.
a) Compute the integral homology groups $H_{*}(L(p, q))$.
b) Compute $H^{*}\left(L(p, q) ; \mathbb{Z}_{p}\right)$.
c) Compute $H^{*}(L(p, q) ; \mathbb{Q})$.

Q3. Compute the cohomology ring of the two-torus \mathbb{T}^{2}.
Q4. Let L be the union of two once linked circles in S^{3}, and also let L^{\prime} be the union of two unlinked circles in S^{3}. Show that the cohomology groups of $S^{3}-L$ and $S^{3}-L^{\prime}$ are isomorphic, but the cohomology rings are not.

L

L^{\prime}

