OPTIMAL CONTROL THEORY METU EE554 - SPRING 2023

Instructor: Emre Tuna, E113.

Web: users.metu.edu.tr/etuna/ee554/

Scope: This course aims to expose the student to the fundamentals of Optimal Control Theory, providing introductory-level theory and examples on Dynamic Programming, Hamilton-Jacobi-Bellman (HJB) Equation, Pontryagin's Minimum Principle, Linear Quadratic Regulation (LQR), Least Squares Estimation, and Model Predictive Control.

Prerequisite: Some knowledge of Linear Systems Theory (EE502) is assumed.

Textbook: D.E. Kirk. Optimal Control Theory: An Introduction. Dover, 2004.

Tentative course outline:

I. Chapters 1-3 (Kirk)

- Optimal control problem (definition and applications)
- Principle of optimality and dynamic programming
- HJB equation
- LQR
- II. Chapter 4 (Kirk)
 - Calculus of variations
 - Euler-Lagrange equation
 - Conditions of optimality for various cases

III. Chapter 5 (Kirk)

- Hamiltonian formulation and minimum principle
- LQR revisited
- Minimum time problem and other examples
- IV. Infinite-horizon LQR
 - Algebraic Riccati Equation
 - Hamiltonian matrix
 - Conditions for the existence of solutions
- V. Optimization-based feedback for discrete-time systems
 - Least squares estimation
 - Minimum energy control
 - Model predictive control