
EE554 HW9

Q1. For the discrete-time LTI system

x+ = Ax+Bu

we have shown in class that the feedback gain (assuming the inverse exists)

Kd = BTA(N−1)T

[
N−1∑
i=0

AiBBTAiT

]−1

AN (1)

can be used to exponentially regulate the origin, i.e., the closed-loop system matrix [A−BKd]
is Schur. Can you guess a continuous-time version of the gain (1), call it Kc, that regulates the
origin of the continuous-time system ẋ = Ax + Bu ? (I.e., the matrix [A − BKc] is Hurwitz.)
Check whether your guess works in MATLAB (and reguess if necessary) over various numerical
instances. (For the answer see: D.L. Kleinman, “An easy way to stabilize a linear constant
system,” IEEE Transactions on Automatic Control, vol. 15, pp. 692-692, 1970.)

Q2. Consider the MATLAB code below.

function L = dbLfun(C,A)

X = null(C);

for i = 1:length(A)-2

X = null([C;null((A*X)’)’]);

end

L = A*A*X/(C*A*X);

(a) Verify numerically that the function dbLfun generates deadbeat observer gain for any
observable pair (C, A) with C ∈ R1×n and A ∈ Rn×n.

(b) Why does this algorithm work?

Q3. Consider the system

x+ = f(x, u)

where f : X × U → Rn with X ⊂ Rn and U ⊂ Rm. Suppose for all x ∈ X the following
optimization problem admits a solution

Prob(x, N) : VN (x) = min
(v0, ..., vN−1)

h(ξN ) +
N−1∑
k=0

g(ξk, vk) subj. to


ξ0 = x
ξk+1 = f(ξk, vk) ∀k
ξk ∈ X ∀k
vk ∈ U ∀k
ξN ∈ Xf

where Xf ⊂ X is called the terminal set, which is assumed to contain the origin. Let the feedback
law κN : X → U be such that for each x ∈ X , κN (x) = v∗0, where (v

∗
0, . . . , v

∗
N−1) is a minimizing

control sequence for Prob(x, N). Assume that the following conditions hold.



A1. There exist positive constants c1, c2 such that

• g(x, u) ≥ c1∥x∥2 for all x ∈ X and u ∈ U ,
• VN (x) ≤ c2∥x∥2 for all x ∈ X .

A2. h(x) ≥ 0 for all x ∈ Xf and there exists a feedback law κf : Xf → U such that

• f(x, κf(x)) ∈ Xf for all x ∈ Xf ,

• h(f(x, κf(x)))− h(x) ≤ −g(x, κf(x)) for all x ∈ Xf .

Show that the origin of the closed-loop system x+ = f(x, κN (x)) is asymptotically stable.

Remark. In MPC literature it is customary to use VN (x) as a Lyapunov function to establish
stability. See, for instance, D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica, vol. 36, pp. 789-814,
2000.

Q4. Consider the system

x+ = f(x, u)

where f : Rn × Rm → Rn. Suppose that the origin of this system is exponentially stabilizable.
That is, there exist positive constants c, α and for each initial condition x0 ∈ Rn one can
find an (infinite) input sequence (u0, u1, u2, . . .) such that the resulting trajectory satisfies
∥xk∥ ≤ c∥x0∥e−αk for k = 0, 1, 2, . . . Consider the following optimization problem

Prob(x, N) : VN (x) = min
(v0, ..., vN−1)

N∑
k=0

∥ξk∥2 subj. to

{
ξ0 = x
ξk+1 = f(ξk, vk) ∀k

Let the feedback law κN : Rn → Rm be such that for each x ∈ Rn, κN (x) = v∗0, where
(v∗0, . . . , v

∗
N−1) is a minimizing control sequence for Prob(x, N). Show that there exists a (finite)

horizon N̂ such that the origin of the closed-loop system x+ = f(x, κN (x)) is asymptotically
stable for all N ≥ N̂ .


