Q1. Consider the linear system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

where the triple (C, A, B) is both observable and controllable.
(a) Show that the triple $(C,[A+\alpha I], B)$ is both detectable and stabilizable for all $\alpha \in \mathbb{R}$.
(b) Let $\alpha>0$ and R be symmetric positive definite. Show that the below cost

$$
J=\int_{0}^{\infty} e^{2 \alpha t}\left(y^{T} y+u^{T} R u\right) d t
$$

admits a minimizer in the form $u_{\min }(t)=-K x(t)$ where K is a constant feedback gain. Hint: Employ the change of variables $z:=e^{\alpha t} x$ and $v:=e^{\alpha t} u$.
(c) What can be said about the eigenvalue locations of the closed-loop system matrix $A-B K$?

Q2. Consider the nonlinear system

$$
\dot{x}=f(x)+g(x) u
$$

with the unique equilibrium at the origin $x=0$. The cost to be minimized is given as

$$
\begin{equation*}
J=\int_{0}^{\infty}\left(q(x)+u^{T} R(x) u\right) d t \tag{1}
\end{equation*}
$$

where, for all $x \in \mathbb{R}^{n}, q(x) \geq 0$ with $q(0)=0$ and $R(x)$ is symmetric positive definite. Suppose there exists a differentiable positive semidefinite function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $V(0)=0$ satisfying the HJB equation

$$
\begin{aligned}
0 & =\min _{u}\left\{q+u^{T} R u+(\nabla V)^{T}(f+g u)\right\} \\
& =q+(\nabla V)^{T} f-\frac{1}{4}(\nabla V)^{T} g R^{-1} g^{T} \nabla V
\end{aligned}
$$

such that the feedback control

$$
\hat{u}(x)=-\frac{1}{2} R^{-1}(x) g(x)^{T} \nabla V(x)
$$

achieves $\lim _{t \rightarrow \infty} x(t)=0$. Show that this $\hat{u}(x)$ is the optimal control which minimizes the cost (1) (over all $u(\cdot)$ guaranteeing the convergence $\lim _{t \rightarrow \infty} x(t)=0$) and $J_{\min }=V(x(0))$. Hint: Substitute $u=\hat{u}+v$ in (1) and obtain

$$
J=-\int_{t=0}^{t \rightarrow \infty} d V+\int_{0}^{\infty} v^{T} R(x) v d t
$$

Q3. Consider the second-order (normalized) antenna position system with friction

$$
\ddot{y}+\dot{y}=u
$$

where y is the (angular) position of the antenna and u is the torque applied to the system. Cost to be minimized is

$$
J=\int_{0}^{\infty}\left(y^{2}+u^{2}\right) d t
$$

(a) Find $J_{\text {min }}$ in terms of $y(0)$ and $\dot{y}(0)$.
(b) Let the optimal control law be $u_{\text {min }}=-k_{1} y-k_{2} \dot{y}$. Find k_{1} and k_{2}.
(c) Consider the cost

$$
\hat{J}=\int_{0}^{\infty}\left((y-r)^{2}+u^{2}\right) d t
$$

where r is a constant reference position. Show that the optimal control law reads $\hat{u}_{\text {min }}=$ $-k_{1}(y-r)-k_{2} \dot{y}$, where k_{1} and k_{2} are same as in part (b).

Q4. For the controllable system $\dot{x}=A x+B u$ consider the problem of minimizing cost

$$
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u+\dot{u}^{T} M \dot{u}\right) d t
$$

where all the matrices Q, R, M are symmetric positive definite.
(a) Show that this problem reduces to a standard LQR problem for an augmented system.
(b) Show that the resulting optimal control law will have both state and integral feedback terms. Note that the solution will depend on $u(0)$ which, depending on the application, can be fixed or chosen to further minimize J.

Q5. Consider the collection of systems

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
5 & -4 \\
8 & -7
\end{array}\right] x+B_{i} u \\
y & =C_{j} x
\end{aligned}
$$

where

$$
B_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad B_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C_{1}=\left[\begin{array}{ll}
2 & -1
\end{array}\right], \quad C_{2}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

The cost to be minimized is

$$
J=\int_{0}^{\infty}\left(y^{2}+u^{2}\right) d t .
$$

(a) For which of the four systems $\left(C_{1}, A, B_{1}\right),\left(C_{1}, A, B_{2}\right),\left(C_{2}, A, B_{1}\right),\left(C_{2}, A, B_{2}\right)$ can you claim that the optimal stabilizing Riccati solution P exists? How about its positive definiteness?
(b) Solve the optimal control problem for the system $\left(C_{1}, A, B_{2}\right)$. Hint: $\dot{y}=$?

