Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{k \times n}$. Recall the eigenvector tests:
Theorem 1 The pair (A, B) is controllable if and only if no eigenvector of A^{T} belongs to null B^{T}.

Theorem 2 The pair (A, B) is stabilizable (in the continuous-time sense) if and only if no eigenvector of A^{T} with eigenvalue $\operatorname{Re}(\lambda) \geq 0$ belongs to null B^{T}.

Theorem 3 The pair (C, A) is observable if and only if no eigenvector of A belongs to null C.
Theorem 4 The pair (C, A) is detectable (in the continuous-time sense) if and only if no eigenvector of A with eigenvalue $\operatorname{Re}(\lambda) \geq 0$ belongs to null C.

Q1. Using the proper eigenvector test, prove the following statements.
(a) The pair (A, B) is controllable if and only if

$$
\operatorname{rank}\left[\begin{array}{ll}
A-\lambda I & B]=n \quad \forall \lambda \in \mathbb{C} .
\end{array}\right.
$$

(b) The pair (A, B) is stabilizable if and only if

$$
\operatorname{rank}\left[\begin{array}{ll}
A-\lambda I \quad B]=n \quad \forall \lambda \in\{\eta \in \mathbb{C}: \operatorname{Re}(\eta) \geq 0\}
\end{array}\right.
$$

(c) The pair (C, A) is observable if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]=n \quad \forall \lambda \in \mathbb{C}
$$

(d) The pair (C, A) is detectable if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]=n \quad \forall \lambda \in\{\eta \in \mathbb{C}: \operatorname{Re}(\eta) \geq 0\}
$$

Q2. Show that the pair (C, A) is observable if and only if the pair $\left(C^{T} C, A\right)$ is observable.
Q3. Given a controllable pair (A, B) suppose there exists $P=P^{T}>0$ such that $A^{T} P+P A \leq 0$. Prove that the matrix $\left[A-B B^{T} P\right]$ is Hurwitz.

Q4. Suppose there exists $P=P^{T}>0$ such that $A^{T} P+P A-C^{T} C<0$.
(a) Show that the pair (C, A) is detectable.
(b) Propose an observer gain $L \in \mathbb{R}^{n \times k}$ such that the matrix $[A-L C]$ is Hurwitz.

Q6. Let the subspace $\mathcal{S} \subset \mathbb{C}^{n}$ with nonzero dimension be invariant under A. Show that \mathcal{S} must contain an eigenvector of A.

