Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{k \times n}$. Recall the eigenvector tests:

Theorem 1 The pair (A, B) is controllable if and only if no eigenvector of A^T belongs to null B^T .

Theorem 2 The pair (A, B) is stabilizable (in the continuous-time sense) if and only if no eigenvector of A^T with eigenvalue $\operatorname{Re}(\lambda) \geq 0$ belongs to null B^T .

Theorem 3 The pair (C, A) is observable if and only if no eigenvector of A belongs to null C.

Theorem 4 The pair (C, A) is detectable (in the continuous-time sense) if and only if no eigenvector of A with eigenvalue $\operatorname{Re}(\lambda) \geq 0$ belongs to null C.

Q1. Using the proper eigenvector test, prove the following statements.

(a) The pair (A, B) is controllable if and only if

$$\operatorname{rank} \begin{bmatrix} A - \lambda I & B \end{bmatrix} = n \quad \forall \lambda \in \mathbb{C} \,.$$

(b) The pair (A, B) is stabilizable if and only if

rank
$$[A - \lambda I \ B] = n \quad \forall \lambda \in \{\eta \in \mathbb{C} : \operatorname{Re}(\eta) \ge 0\}.$$

(c) The pair (C, A) is observable if and only if

$$\operatorname{rank} \left[\begin{array}{c} A - \lambda I \\ C \end{array} \right] = n \quad \forall \lambda \in \mathbb{C} \,.$$

(d) The pair (C, A) is detectable if and only if

$$\operatorname{rank} \left[\begin{array}{c} A - \lambda I \\ C \end{array} \right] = n \quad \forall \lambda \in \{\eta \in \mathbb{C} : \operatorname{Re}(\eta) \ge 0\}.$$

Q2. Show that the pair (C, A) is observable if and only if the pair $(C^T C, A)$ is observable.

Q3. Given a controllable pair (A, B) suppose there exists $P = P^T > 0$ such that $A^T P + PA \leq 0$. Prove that the matrix $[A - BB^T P]$ is Hurwitz.

Q4. Suppose there exists $P = P^T > 0$ such that $A^T P + PA - C^T C < 0$.

- (a) Show that the pair (C, A) is detectable.
- (b) Propose an observer gain $L \in \mathbb{R}^{n \times k}$ such that the matrix [A LC] is Hurwitz.
- **Q5.** Show that if rank $[B \ AB \ \cdots \ A^{n-1}B] = n$ then rank $[A \lambda I \ B] = n$ for all $\lambda \in \mathbb{C}$.

Q6. Let the subspace $S \subset \mathbb{C}^n$ with nonzero dimension be invariant under A. Show that S must contain an eigenvector of A.