Q1. Consider the first-order LTI system $\dot{x}=u$ (without any bound on the control) and the associated optimization problem

$$
J^{*}(x(0))=\min _{u(\cdot)} \int_{0}^{\infty}\left(q x(t)^{2}+r u(t)^{2}\right) d t
$$

where q and r are positive constants.
(a) Obtain and solve the Riccati equation.
(b) Find the optimal control.
(c) Verify $J^{*}(x(0))=p x(0)^{2}$ (where p denotes the solution of the Riccati equation) by carrying out the integration.
(d) Verify $J^{*}(x(0))=p x(0)^{2}$ using the HJB equation.

Q2. Problem 5-15.
Q3. Consider the LTI system $\dot{x}=A x+B u$ (without any bound on the control) and the associated optimization problem

$$
J^{*}\left(t_{0}, x\left(t_{0}\right)\right)=x\left(t_{f}\right)^{T} H x\left(t_{f}\right)+\min _{u(\cdot)} \int_{t_{0}}^{t_{f}}\left(x(\tau)^{T} Q x(\tau)+u(\tau)^{T} R u(\tau)\right) d \tau
$$

where the symmetric matrices $H \geq 0, Q \geq 0$, and $R>0$ are of appropriate sizes. Recall that the HJB equation for this case reads

$$
0=\nabla_{t} J^{*}(t, x)+\min _{u}\left\{x^{T} Q x+u^{T} R u+\nabla_{x} J^{*}(t, x)^{T}[A x+B u]\right\}
$$

where $J^{*}(t, x)$ enjoys the form $J^{*}(t, x)=x^{T} P(t) x$ for some symmetric matrix $P(t)$ satisfying the Riccati equation

$$
\dot{P}=-Q+P B R^{-1} B^{T} P-A^{T} P-P A .
$$

Let us now introduce the Hamiltonian as

$$
\mathcal{H}(x, u, p)=x^{T} Q x+u^{T} R u+p^{T}[A x+B u] .
$$

Show that along the optimal trajectories the Hamiltonian $\mathcal{H}\left(x^{*}(t), u^{*}(t), \nabla_{x} J^{*}\left(t, x^{*}(t)\right)\right)$ is constant. Hint: $\dot{\mathcal{H}}=\nabla_{x} \mathcal{H}^{T} \dot{x}+\nabla_{u} \mathcal{H}^{T} \dot{u}+\nabla_{p} \mathcal{H}^{T} \dot{p}$.

Q4. Given a stabilizable pair (A, B) let the symmetric positive definite matrix P solves the following Riccati equation

$$
A^{T} P+P A+I-P B B^{T} P=0
$$

Show that the system $\dot{x}=\left[A-\alpha B B^{T} P\right] x$ is exponentially stable for all $\alpha \geq 1$.

