Q1. Problem 3-3 (from the textbook).
Q2. Problem 3-12.
Q3. Consider the optimization problem

$$
\begin{array}{r}
V_{N}(x)=\min _{u_{0}, \ldots, u_{N-1}} x_{N}^{T} H x_{N}+\sum_{k=0}^{N-1} x_{k}^{T} Q x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to }\left\{\begin{aligned}
x_{0} & =x \\
x_{k+1} & =A x_{k}+B u_{k}
\end{aligned}\right.
\end{array}
$$

where $x_{k} \in \mathbb{R}^{n}, u_{k} \in \mathbb{R}^{m}$, the symmetric positive definite matrices H, Q, R are of appropriate dimensions, the pair (A, B) is controllable, and $N \geq 0$ is an integer.
(a) Write the recursive relation that allows one to compute Q_{N+1} from Q_{N} where $V_{N}(x)=$ $x^{T} Q_{N} x$. What does Q_{0} equal?
(b) Let $P=\lim _{N \rightarrow \infty} Q_{N}$. Show that P must satisfy

$$
\begin{equation*}
x^{T} P x=x^{T} Q x+\min _{u}\left\{u^{T} R u+(A x+B u)^{T} P(A x+B u)\right\} \tag{1}
\end{equation*}
$$

for all x.
(c) Show that (1) is equivalent to the Riccati equation

$$
A^{T} P A-P-A^{T} P B\left(B^{T} P B+R\right)^{-1} B^{T} P A+Q=0
$$

(d) Show that the trajectories of the system $x^{+}=A x+B u$ where u solves (1) converge to the origin, i.e., $x_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Q4. Consider the feedback law $\kappa_{N}(x)=u_{0}^{*}(x)$ where

$$
\begin{aligned}
& \left(u_{0}^{*}(x), \ldots, u_{N-1}^{*}(x)\right)=\arg \min _{\left(u_{0}, \ldots, u_{N-1}\right)} \sum_{k=0}^{N-1} x_{k}^{T} Q x_{k} \\
& \text { subject to }\left\{\begin{aligned}
x_{0} & =x \\
x_{k+1} & =A x_{k}+B u_{k} \\
x_{N} & =0
\end{aligned}\right.
\end{aligned}
$$

where $x_{k} \in \mathbb{R}^{n}$, $u_{k} \in \mathbb{R}^{m}, Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite, the pair (A, B) is controllable, and $N \geq n$ is an integer. Show that the origin of the closed-loop system $x^{+}=A x+B \kappa_{N}(x)$ is exponentially stable.

