2 May 2019

First name:_____

Last name:_____

Student ID:_____

Signature:_____

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

$\mathbf{Q1}$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

The state of the scalar system $\dot{x} = x + u$ starting from the initial condition x(0) = 30 is to be driven to the origin in $\ln 8$ seconds, i.e., $x(\ln 8) = 0$, while minimizing the cost

$$J = \int_0^{\ln 8} \frac{1}{4} u^4 dt \,.$$

Find the resulting optimal trajectory $x^*(t)$.

The trajectory $(x_1^*(t), x_2^*(t))$ of the following system with bounded input $u \in [-1, 1]$

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 + u \end{array}$$

evolves throughout the interval $t \in [0, \pi]$ under the control $u^*(t)$ that minimizes the cost

$$J = \frac{1}{2} \left[x_1(\pi)^2 + x_2(\pi)^2 \right] \,.$$

It is measured that $x_1^*(\pi) = 0$ and $x_2^*(\pi) = -1$. Find the initial conditions $x_1^*(0)$ and $x_2^*(0)$.

Consider the linear system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where the triple (C, A, B) is both observable and controllable.

- (a) Show that the triple $(C, [A + \alpha I], B)$ is both detectable and stabilizable for all $\alpha \in \mathbb{R}$.
- (b) Let $\alpha > 0$ and R be symmetric positive definite. Show that the below cost

$$J = \int_0^\infty e^{2\alpha t} (y^T y + u^T R u) dt$$

admits a minimizer in the form $u_{\min}(t) = -Kx(t)$ where K is a constant feedback gain. Hint: Employ the change of variables $z := e^{\alpha t}x$ and $v := e^{\alpha t}u$.

(c) What can be said about the eigenvalue locations of the closed-loop system matrix A - BK?

Consider the linearization of the (normalized) pendulum system without friction

$$\ddot{y} + y = u$$

where y is the (angular) position of the pendulum and u is the torque applied to the system. Cost to be minimized is

$$J = \int_0^\infty (3y^2 + 3\dot{y}^2 + u^2)dt \,.$$

- (a) Find J_{\min} in terms of y(0) and $\dot{y}(0)$.
- (b) Let the optimal control law be $u_{\min} = -k_1y k_2\dot{y}$. Find k_1 and k_2 .