First name:
Last name: \qquad
Student ID:

Signature:

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	Q2	Q3	Q4	Total

Q1. 20%

The state of the scalar system $\dot{x}=x+u$ starting from the initial condition $x(0)=30$ is to be driven to the origin in $\ln 8$ seconds, i.e., $x(\ln 8)=0$, while minimizing the cost

$$
J=\int_{0}^{\ln 8} \frac{1}{4} u^{4} d t
$$

Find the resulting optimal trajectory $x^{*}(t)$.

The trajectory $\left(x_{1}^{*}(t), x_{2}^{*}(t)\right)$ of the following system with bounded input $u \in[-1,1]$

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+u
\end{aligned}
$$

evolves throughout the interval $t \in[0, \pi]$ under the control $u^{*}(t)$ that minimizes the cost

$$
J=\frac{1}{2}\left[x_{1}(\pi)^{2}+x_{2}(\pi)^{2}\right] .
$$

It is measured that $x_{1}^{*}(\pi)=0$ and $x_{2}^{*}(\pi)=-1$. Find the initial conditions $x_{1}^{*}(0)$ and $x_{2}^{*}(0)$.

Q3.
Consider the linear system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

where the triple (C, A, B) is both observable and controllable.
(a) Show that the triple $(C,[A+\alpha I], B)$ is both detectable and stabilizable for all $\alpha \in \mathbb{R}$.
(b) Let $\alpha>0$ and R be symmetric positive definite. Show that the below cost

$$
J=\int_{0}^{\infty} e^{2 \alpha t}\left(y^{T} y+u^{T} R u\right) d t
$$

admits a minimizer in the form $u_{\min }(t)=-K x(t)$ where K is a constant feedback gain. Hint: Employ the change of variables $z:=e^{\alpha t} x$ and $v:=e^{\alpha t} u$.
(c) What can be said about the eigenvalue locations of the closed-loop system matrix $A-B K$?

Q4.
Consider the linearization of the (normalized) pendulum system without friction

$$
\ddot{y}+y=u
$$

where y is the (angular) position of the pendulum and u is the torque applied to the system. Cost to be minimized is

$$
J=\int_{0}^{\infty}\left(3 y^{2}+3 \dot{y}^{2}+u^{2}\right) d t
$$

(a) Find $J_{\text {min }}$ in terms of $y(0)$ and $\dot{y}(0)$.
(b) Let the optimal control law be $u_{\text {min }}=-k_{1} y-k_{2} \dot{y}$. Find k_{1} and k_{2}.

