First name:

\qquad

Last name: \qquad

Student ID: \qquad
Signature: \qquad

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	Q2	Q3	Q4	Total

For the scalar system $\dot{x}=-x+u$ starting from the initial condition $x(0)=1$ the below cost is to be minimized.

$$
J=x(1)^{2}+\int_{0}^{1} u^{2} d t
$$

Find $x^{*}(1)$, the final value of the optimal trajectory.

Given $t_{0}, t_{f}, x\left(t_{0}\right), x\left(t_{f}\right)$, the cost

$$
J=\int_{t_{0}}^{t_{f}} x \sqrt{1+u^{2}} d t
$$

is to be minimized for the scalar system $\dot{x}=u$. Assuming the boundary conditions are satisfied, determine whether each of the below candidates could be an optimal trajectory. Hint: $\dot{H}^{*}=$?
(a) $x^{*}(t)=\cos t+\sin t$.
(b) $x^{*}(t)=e^{t / 2}+e^{-t / 2}$.

Consider the collection of systems

$$
\begin{aligned}
\dot{x} & =A x+B_{i} u \\
y & =C_{j} x
\end{aligned}
$$

where

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right], \quad B_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad B_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right], \quad C_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad C_{2}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

The cost to be minimized is

$$
J=\int_{0}^{\infty}\left(y^{2}+u^{2}\right) d t
$$

(a) For which of the four systems $\left(C_{1}, A, B_{1}\right),\left(C_{1}, A, B_{2}\right),\left(C_{2}, A, B_{1}\right),\left(C_{2}, A, B_{2}\right)$ can you claim that the optimal stabilizing Riccati solution P exists? How about its positive definiteness?
(b) Solve the optimal control problem for the system $\left(C_{1}, A, B_{1}\right)$. That is, compute the optimal control and minimum value of the cost. Hint: $\dot{y}=$?

Consider the linear system

$$
\dot{x}=A x+B u
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and the pair (A, B) is stabilizable. Let the symmetric matrix $P \in \mathbb{R}^{n \times n}$ satisfy

$$
\min _{u(\cdot)} \int_{0}^{\infty}\left(x^{T} x+u^{T} u\right) d t=x(0)^{T} P x(0)
$$

for all initial conditions $x(0) \in \mathbb{R}^{n}$.
(a) Write the Riccati equation satisfied by P.
(b) Show that the feedback law $u=-\frac{1}{2} B^{T} P x$ exponentially stabilizes the system.

