First name:	
Last name:	
Student ID:	
Cianatura	

Read before you start:

- There are four questions.
- $\bullet\,$ The examination is closed-book.
- No computer/calculator is allowed.
- $\bullet\,$ The duration of the examination is 100 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

 $\mathbf{Q1.}$

For the scalar system $\dot{x} = -x + u$ starting from the initial condition x(0) = 1 the below cost is to be minimized.

$$J = x(1)^2 + \int_0^1 u^2 dt \,.$$

Find $x^*(1)$, the final value of the optimal trajectory.

Q2. 20%

Given t_0 , t_f , $x(t_0)$, $x(t_f)$, the cost

$$J = \int_{t_0}^{t_f} x\sqrt{1 + u^2} \, dt$$

is to be minimized for the scalar system $\dot{x}=u$. Assuming the boundary conditions are satisfied, determine whether each of the below candidates could be an optimal trajectory. *Hint:* $\dot{H}^*=?$

(a)
$$x^*(t) = \cos t + \sin t$$
.

(b)
$$x^*(t) = e^{t/2} + e^{-t/2}$$
.

 $\mathbf{Q3.}$

Consider the collection of systems

$$\dot{x} = Ax + B_i u$$

$$y = C_i x$$

where

$$A = \left[\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array} \right] \,, \quad B_1 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \,, \quad B_2 = \left[\begin{array}{c} -1 \\ 1 \end{array} \right] \,, \quad C_1 = \left[\begin{array}{cc} 1 & 1 \end{array} \right], \quad C_2 = \left[\begin{array}{cc} 1 & 0 \end{array} \right].$$

The cost to be minimized is

$$J = \int_0^\infty (y^2 + u^2) dt.$$

- (a) For which of the four systems (C_1, A, B_1) , (C_1, A, B_2) , (C_2, A, B_1) , (C_2, A, B_2) can you claim that the optimal stabilizing Riccati solution P exists? How about its positive definiteness?
- (b) Solve the optimal control problem for the system (C_1, A, B_1) . That is, compute the optimal control and minimum value of the cost. *Hint:* $\dot{y} = ?$

 $\mathbf{Q4.}$

Consider the linear system

$$\dot{x} = Ax + Bu$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, and the pair (A, B) is stabilizable. Let the symmetric matrix $P \in \mathbb{R}^{n \times n}$ satisfy

$$\min_{u(\cdot)} \int_0^\infty (x^T x + u^T u) \, dt = x(0)^T P x(0)$$

for all initial conditions $x(0) \in \mathbb{R}^n$.

- (a) Write the Riccati equation satisfied by P.
- (b) Show that the feedback law $u = -\frac{1}{2}B^T P x$ exponentially stabilizes the system.