First name:

Last name: \qquad
Student ID: \qquad
Signature: \qquad

Read before you start:

- There are four questions.
- The examination is closed-book.
- No computer/calculator is allowed.
- The duration of the examination is 120 minutes.
- Besides correctness, the CLARITY of your presentation will also be graded.

Q1	Q2	Q3	Q4	Total

Consider a unit mass with position y on a straight line, whose motion is subject to the force u through the Newton's law $\ddot{y}=u$. The initial position and velocity of the mass are $y(0)=0.75$ and $\dot{y}(0)=-1$, respectively. Find the force $u^{*}(t)$ to be applied through the interval $t \in[0,1]$ that brings the mass to rest $(\dot{y}(1)=0)$ at the origin $(y(1)=0)$ while minimizing the cost

$$
J=\int_{0}^{1} u^{2} d t
$$

Consider the cascaded water tanks shown in the figure, where x_{1} and x_{2} are the water levels in the tanks and $u \in[0,1]$ is the inflow to the first tank. This system can be modelled as

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+u \\
\dot{x}_{2} & =x_{1} .
\end{aligned}
$$

Let initially (at $t=0$) both tanks be empty. Find the optimal control $u^{*}(t)$ that maximizes $x_{2}(1)$ while ensuring $x_{1}(1)=0.5$.

Consider the second-order (normalized) antenna position system with friction

$$
\ddot{y}+\dot{y}=u
$$

where y is the (angular) position of the antenna and u is the torque applied to the system. Cost to be minimized is

$$
J=\int_{0}^{\infty}\left(y^{2}+u^{2}\right) d t
$$

(a) Find $J_{\text {min }}$ in terms of $y(0)$ and $\dot{y}(0)$.
(b) Let the optimal control law be $u_{\min }=-k_{1} y-k_{2} \dot{y}$. Find k_{1} and k_{2}.

For the system

$$
x^{+}=f(x, u)
$$

where $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ and $\kappa_{\mathrm{f}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfy for all x

$$
h\left(f\left(x, \kappa_{\mathrm{f}}(x)\right)\right)-h(x) \leq-\|x\|^{2} .
$$

Consider the following optimization problem
$\operatorname{Prob}(x, N): V_{N}(x)=\min _{\left(v_{0}, \ldots, v_{N-1}\right)} h\left(\xi_{N}\right)+\sum_{k=0}^{N-1}\left\|\xi_{k}\right\|^{2} \quad$ subject to $\quad\left\{\begin{array}{l}\xi_{0}=x, \\ \xi_{k+1}=f\left(\xi_{k}, v_{k}\right) .\end{array}\right.$
Let the feedback law $\kappa_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfy $\kappa_{N}(x)=v_{0}^{*}$, where $\left(v_{0}^{*}, \ldots, v_{N-1}^{*}\right)$ is a minimizing control sequence for $\operatorname{Prob}(x, N)$.
(a) Show that

$$
\begin{equation*}
V_{N}\left(f\left(x, \kappa_{N}(x)\right)\right) \leq V_{N-1}\left(f\left(x, \kappa_{N}(x)\right)\right) . \tag{1}
\end{equation*}
$$

(b) Show that (1) implies

$$
V_{N}\left(f\left(x, \kappa_{N}(x)\right)\right)-V_{N}(x) \leq-\|x\|^{2} .
$$

