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1 Imtroduction

Let G be a finite group and 4 be a group of operators of G with Cg(A4) = 1. In [14],
Turull proved that if (|G|, |4]) = 1 then (with certain exceptions for 4), the Fitting
height of G is bounded by the length of the longest chain of subgroups of 4. We ex-
pect a similar bound for the Fitting height of G when the assumption (|G|, |4]) = 1
is replaced by the assumption that A is nilpotent (see [1]). In [9], Cheng Kei-Nah
showed that G is metanilpotent if 4 is a cyclic group whose order is a product of two
distinct primes. Here we obtain a result that takes Kei-Nah’s work one step further:

Theorem. Let G be a finite group admitiing a fixed-point free automorphism « of order
par for pairwise distinct primes p,q and r. Then G has Fitting height at most 3.

2 Preliminary results

First we state a well-known fact which is frequently used in this paper.

Lemma 1 (see {5]). Let p, g, be distinct primes and G = QA where A is cyclic of order
pand Q is a g-group with [Q, 4] = Q. Assume further that G acts on a vector space V
over a field k of characteristic r in such a way that [V, A] = V. If [V,Q) # 0, then
g = 2. .

Lemma 2. Let H = ST, where S<a H, S is a p-group and T is a t-group for distinci
primes p and t, and let o be an automorphism of H of order p" which leaves T invari-
ant. Assume that Cpr,(z) = 1 where Ty = Cr(S) and z = «f"" . Let V be a kH (o)~
module on which § acts Jaithftlly, and k a field of characteristic different from p. If
ICp(2), Csl)l =1, then [S, TV = 1.

Proof. We set G = H{«) and argue by induction on |G| + dim; V. We may assume
thatn = 1.

(777, 2] =T/g
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(1} S/®(S) is an irreducible T{u)-module with [S,T1= 8, [®(8),T] =1 and § is
special. Moreover ®{T[Ty) = 1 and {&) acts irreducibly on T/T,.
L.et Sy be a minimal element of

{44 £ 8,4 is T{a)-invariant and [4, T} # 1}.

Then S)/®(S)) is an irreducible T{a)-module with [$, T} = Sy, [®(S;),T] = and
S is special. By induction we see that §y = §. '

Next let T7/Tp be a minimal proper (& y-invariant subgroup of T/ T on which {e)>
acts non-trivially, Then ®(77/Tp) = 1. Induction applied to S{71,«] on V gives that
[Ty, o} < Ty, which is impossible. Hence {Ti,0) = T = T1.

(2) S is abelian,
Assume the contrary. Then ®(S) # 1 and so Cgs)(a) # 1. Now

U=V, Cps@] #1 and Cy(Co(®) = 1.

This shows that Cy(a)} = 1, as [Cy{e), Cays ()] = 1.

If char k=1 then for any irreducible G-submodule W of U, [W,7T;] is G-
invariant and properly contained in W. Hence [W, To} = 1. Set K = Ker(G on W)
and G = G/K. Now T is abelian and [T,«¢l = T < [H,o}. In this case, we may
consider the action of G on W and apply [4, Lemma 1.1]. We conclude that
[[H, o], S/®(S)] = 1, which is impossible as [S, 7] = §. Thus char k ¥ |G|

Consider T'(ax) on U. Now [U,T]s 1, because otherwise [U,S] =1 and so
[V, S, Cosy(&)] == 1 which is not the case. Using Lemma 1 we get t = 2 as Cy(a) = L.
On the other hand, et R be a maximal abelian normal subgroup of the p-group
S¢ay. Now R= Csp(R). If 0 ¢ R, then [R,e] 1. If ¥ = [U,[R,a]}= 1, then
(R, o] < Cs(U) < ®(S) and 50 1 5 Cig () < Cos)(er). It follows that

Cy(Cysy(e)) < Cv(Cir ().

AsV = U@ Cyp(Cos) (), we get [V, Cir,j{e}] = 1 which is a contradiction. Thus
Y # 1. As [Y,[R,e]] = ¥, by [6, Lemma 4.5] we have | Y| = |Cy(«)}”, which is im-
possible since Cy{a} = 1. Therefore [R, o] = 1, that is, o € R. It follows that

(S<ay, a0 < [SCod, Ry 0] < [Ryaf =1

and so the minimal polynomial of & on S/®(S) has degree at most 2. On the other
kand, [7, Theorem IX. 1.10] gives that the minimal polynomial of « on S§/®(S) is
xF 1 as T/Ty is abelidn. Consequently p = 2 = ¢, a contradiction. Therefore § is
abeHan.

As V is a completely reducible S-module we have Vig= V1@ - @ V,, where
¥1,..., V, are the homogeneous S-components of ¥ and T (&) permutes ¥,..., V}.

{3} There exists an {o)-invariant homogeneous S-component.
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If no V; is e-invariant, put X; = Vi@ V@ - @ v fori=1,...,1 Since
{v+u“+---—i—v°‘pn; |ve Vi} < Cx(a)
fori=1,...,1 the subgroup Cs{«) acts trivially on each ¥; and hence on V', which is

not the case.

(4) Each T<{ay-orbit of {V1,..., Vi} contains at most one (ay-invariant element.

Let U and W belong to the same T(u)-orbit, and suppose that both are
fixed by a Since U? = W for some ye T'(ay, we have [y, e Np(U) and so
yNy(U) e CT/NT(U)(O"')- As Cr{) < To = Nz (U), we see that y ¢ Np(U).

(5} S acts trivially on each T {«)-invariant homogeneous S-component.

Let ¥: be a T¢{a)-invariant subspace on which S acts non-trivially. Choose an iz-
reducible ST(a)>-submodule M of ¥; on which § acts non-trivially. Now M g is ho-
mogeneous and so {S/Ker(S on M), 7] = 1, which is not the case.

(6} Cs(x) centralizes every element of a T{a)-orbit containing no {ay-invariant ele-
ment.

An orbit having no («)-invariant element can be written as a union of {oy-0rbits,
and the same argument as in (3) gives the result.

(7) Let {yo=1,¥1,..., ym} be a rransver_sl*al to To in T and let U be a Tolw)-invariant
homogeneous S-component. Then Cs(0)” < Ker(Son U) for j=1,...,m.

Consider the T'(ad-orbit {U, U, ..., U} containing U. As {Un,..., UM} is
{e)-invariant, it is 2 union of {u)-orbits and the same argument as in (3) gives that
Cs(e) < Ker(S on U%) for j = 1,...,m, that is, Cs(a)” < Ker(S on U).

(8) Finally, let L be the intersection of the kernels of the actions of S on all {o)-
invariant homogeneous S-components which are not T<{oy-invariant. As

[V, Cs(a)] # 1,
we have Cs(a) 1L = 1 by (5} and (6). Also (7) shows that
(Cs(a)' {re T —Tp) < L.
Hence
Cs(@) N {Cs(e) | te T~ Toy < Csle)NL = 1.

This gives that Cs{e)” N<{Cs(e)” | yi # y;» = 1 and so

S sl = @ Csla),

FeT(Tp [eT/Ty

a T{o)-submodule of S. We conclude that
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S= @D Csla)f

ieT/Ty

as 5 is irreducible, and so |S1 = |Cs(a)) T/l g

and 5o |S] = | Cg(a)|” by [6, Lemma 4. ]
completes the proof.

We write f( ) for the Fitting fength of 4 group G

Corollary 3 (Cheng Kei-Nah [9

D). Let G be a finise group admitting o fixed-point free
automorphism o of order P4,

where p and g are distines primes. Then f(G) < 2.

Proof. Set (&) = %> x o> where lots] = p and 1] = g. We argue by induction on
1G], As Ce(a) = 1, for any prime dividing |G| we have a unique <o>-invariant Sylow
subgroup of G and so we obtain an (a)-tower (C) (i= 1,2,3) in the sense of (13}
except that we have reversed the order of the indices, that is, we let G normalize ¢
for i < j. By induction we have G = 1 CyC; where C) = F{G) is the unigue min-
imal normal subgroup of G. By the Fong-Swan Theorem we may assume that
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divides |C; Gy, If Gis a q'-group, [13, Theorem 3.1} implies that
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Now we consider VST {(z)> as an {x,y-tower. Since p # 2, by [13, Theorem 3.1},
the only possible towers for centralizers inside this tower are the following:

(a) Cslag)Criag)<zd; (B) Cr{n)Cslag)<zdi (¢) Crlag)Crlng){z).

Now (a) is impossible since Cs(z,) < ®(S) and [@(S), T} = 1. Assume that (b) holds.
Then [[Cs{ey), 2], Cr{0g)] # 1. As &, acts fixed-point freely on Cy{ay), an application
of [3, Lemma 1.1} to Cs(e,){ep)> on Cy(a,) leads to a contradiction. Thus (c) holds
and so {Cy(og), Cr{eg)] # 1.

3  Proof of the Theorem

Set (a) = (o X {og» % (%) where |op} = p, jotg] = ¢ and |} = r. Let G be a mini-
mal counter-example to the theorem. As Co{«) = 1, for any prime dividing |G| we
have a unique {a)-invariant Sylow subgroup of G, and so we obtain an irreducible
Ced-tower (C7) (i = 1,2,3,4) in the sense of [13] satisfying the following:

(i} n(C;) = {p:} consists of a single prime for i=1,2,3,4 and p; # piy for
i=1,2,3;

(i) Cjis {«)-invariant for i =1,2,3,4 and G; is normalized by C; for j > i and
i=1,2,3

(iii) C; = C;/D;is a special group on the Frattini factor group of which (J],.; G;) <>
acis irreducibly for i == 1,2,3 where D; = Ce,(CiyfDiy) for i > land Dy = 1,

(iv) [C;, Cipa] = Cifori=1,2,3.

Then by induction we see that G = C,CyC3Cy where ) = F (G) is the unique
minimal normal subgroup of G. Put H = C;C3Cs. Now Cy(Cr) = 1. As Gy is
an irreducible H<{a)-module, by the Fong-Swan Theorem, we may assume that
(1Cul, [H @) = 1.

Let W be a homogeneous H-component of €} on which C; acts non-trivially, Put
B = N (W) and H = H/Ker(H on W). Then W is a homogeneous and faithful
H-module and Cy{B) = 0 as C¢,{a) = 1. Therefore B # 1.

If (|5, |B]) = 1, we see that C(Ca(supps(H)) = 0 by [12, Proposition 4.5]. Then
Ca(suppy(H)) # 1 and 1 # C; < supp(H). It follows that Cp(supps(H)) < C3(5)-
But Cp(Cy) = 1, because otherwise [, Cp(Cy)] = 1, which is not the case as the cen-
tralizer of a Sylow subgroup of (&) has Fitting beight at most 2 by the Corollary and
since f(H) = 3. This contradiction shows that (JH]|,|B}) # 1.

On the other hand if B = (), then C; is 2 homogeneous H-module and so it is
irreducible by [10, Theorem B.7.11). Then we apply {8, Theorem)] and get Cg{a) # 1,
a contradiction. Thus 1 # B < (&). Set (o) = B@ B’ and consider ¥ = C;Cx(B’).
Now Cy(B) = 1. If |B| is a prime, then Y is nilpotent. It follows that Cx{B’) =1 as
Cy{C)) = 1, and now the Corollary gives that f(H) < 2 which is not the case. Thus
|n(B)| = 2. Let |B| = pq and let C;/D; denote the Frattini factor group of C:/D;.
Observe that D, = 1 and that Cy4/Dy is elementary abelian. Also note that Cy(e) is
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ication of
It follows that G is an r'-group and Ce,{o) < Da = Cﬁq(crzﬂ). Bgz ;ﬁlzgigi;c; }izSide
[13, Theorem 3.1] shows that Ce, (%) Co, (o&,)CCA.(af)_ is the enly p
CG;((x,), that is, [Ce,{e), Ce, (%)} # 1, a contradiction.

(Z)Pifsfﬁiifsttlftoﬁtrary Then as in the above argum)eint, 1CC| (zr) C(% (?f}ic(ééi’}) ;:
Vo R . Celop)] # 1 and #{Ch) =
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3“ (tc‘?féf.ﬁni 2 byGtgle )Coroﬂary. Now H is 2 {p, q}-group; let n(Cz) = n(Ca) = {p}
" TCua] £ B, we s Cfe) & Cu(Cy = i it i ot e cse. Ths e
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\?vhjch is impo,ssirb}e by the Corollary. Then by Lemma 1 we h.ave gﬁga&w(a iy
On the other hand Lemma 2 applied to Cy(C3/D3)Caloly) gi:esﬁxed pociznt qfreely on
. = d 50 oo, acts g .
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the first case Cxz (o) = I and in the latte aM : J =1, im-
bye our observa%oni above. Therefore N = (ugary and so (©(C3/Ds), oyt
plying that

CCs/Dz {OC,,) == q)(CB/DB) = CC;/D: (otqoc,}.
It follows that {C @(ocr),@(cg /D3)] = 1 as Cy(a,) is nilpotent. Thus
1 # Czlw) < Cy(®(Ca/D3)) =1,

a contradiction.

(3)£(szffci§pa’1g€9 ¢, v}-group. If n(Cy) = {r}, then Ci1CCq (o) 18 2 Egroulz1 (;r;
Wlﬁc(})lwa ¢, acts ﬁ;ée’d—point freely. It f9llows that {C;,Ccil(ocr},[ g];] g j;i b
[Cy, Co, faf)] = 1 by the Corollary, that} 15,1(3%50{,) (}é ?;.O{T) 3s1 a;’d goa&?%.acts
: o= 1, T1 C plg) =
C. r}, we may assume that [Cy, o] = 1. The 2
g)((eﬁpiix{at}freeiy on C,C,Cy which is impossible by the Corollary.

{4).A?;(s§:r)1ect§§ fr}{cz) = {p}, n(C3) = {r} and #(Cs} m.{q}. Then {C4,>oaq} Q& D4..vé£

[Cy, ] = 1, then Ce, (o) = 1 and (12, Theorem 3.1 applied to CyCq oty Con(OC 1)!g; ’

thgt’: é’c (ap3CcJ (otp) ;s the only tower inside Cc, ¢, ¢, (0,), that is, [Cc, (¢}, Co; (o .
i
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This contradicts the fact that Ce,c,(0pg) = 1 as n(C3) = {r}. Therefore [Cs, 0] # 1
which implies that [Cs, o] = Ca, .. Cey/s (2) = 1.

Now Lemma 2 applied to Co( G/ D3)Caloy) shows that {Cc_z(“r)v Coyp, (o)] # 1.
It follows that [Ce, (a), X] # 1 where X /D3 = C¢y/p, (o). We observe that Cc, (o) is
normatized by X and C)Cy(e)X is a group of Fitting height 3. But this is not the
case by the Corollary since ayuy acts fixed-point freely on it.

(5) The final contradiction.

By (3) and {4), we see that n{C4) = {r}. Let n(Cy) = {p} and =(C3) = {g}. If
[Cay&tg) < D4, we_may assume that (Chyorg) = 1 as n(Cy) 5 {g}. It follows that
Ce, () = 1and [C3/ D3, g} = 1 and so {C3/Ds, 0] = 1 by the three subgroup lemma.
as n(C3) = {g}. Then Cg(a,) = 1 because otherwise [Cx(Cs/D3)Ca, a5} = 1 and s0
oy % Loy acts fixed-point freely on T5(C3/D3) Ca which is impossible by the Cor-
ollary.

Now C1CaCq s an (o> % {uy»)-tower, where [Ch,04) = Cp and [Ca, o) = Ci.
We choose an irreducible ({ap) x {oyy)-tower EE,Es where |Ex, o4 = E; and
[Ea, 0p) = E4 inside this tower and apply Lemma 3. If follows that

[CCI (“q)a CC4 (%)} #1,

which is impossible as a, acts fixed-point freely on Cc,c.(2g). Thus [Ca, oy = Ca.

Also observe that [Cs/Ds,0,] # 1, because otherwise Cp{Cs/D3)Cs is centralized
by o, which is impossible by the Corollary.

If (Ce (o), [Co,0p]] # 1, we comsider Ci [Cs, 5] Ce ) as an () x {og))-
tower and pass to an irreducible tower E E:E, where [E4, 0] = Es, [E3, %] = E3.
Now [Es,ap) = 1 and Cp,g,(#p0,) = 1. But an application of Lemma 3 gives that
(Cr, (%), Cr, ()] # 1, a contradiction. Hence [Ce, (o), [Cay 0]} = 1

On the other hand, if [Cc, (%), Ce, (9p)] % D3, then GoCe, () Ce, (a1p) 18 @ group of
Fitting height 3 on which oz, acts fixed-point freely. This contradicts the Corollary.
Therefore [Cc, (9p), C3/Ds)] = 1, that is, Cc, () < Da.

We also observe that [Cy/Ds, o] = C3/Ds, because otherwise o, centralizes C3/Ds
as it centralizes Cy/ D4, and 80 ¢, acts fixed-point freety on (C3/D3){Ca/ Dy), which is
impossible.

Next assume that Cs/Ds is non-abelian and consider the Wedderburn decomposi-
tion of C, with respect to (Cs/D3)Cs. Now &, ¢ N = N (W) for any homogeneous
component W, becanse otherwise [®(C3/D3), ] =1 as 3 /Dy acts faithfully on Gy
Then

Celar) < Cl@(Cy/D3)) =1,

because Cple,) is nilpotent as f(C; Cx(%)) < 2 by the Corollary and Cg{Cy) =11t
follows that o, acts fixed-point freely on CoCe, (0,) and so Ceylop) < Ds. But then o,
acts fixed-point freely on (Cs/D3)(Cs/Da), which is impossible.

This shows that o, ¢ N. Also N # {a,) since Ce:lap) # 1. Therefore either
N = {ogy or N = {ap) X ety >, each of which implies that C@(aq) = 1. But
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{Cé;(aq)a CC;,/Da(aG')] # 1

and hence Cgleg) # 1 by Lemma 2 applied to (C3/D3)Cal<ep) x {egy) on C,
as Ce,/p,(¢g) = 1. This contradiction shows that Cy/Ds is abelian. In this case
Coypyltr) = 1. Set X/Ce,(0) = Cpype (50w} Obviously X is an {«)-invariant
subgroup of Cy such that

CC«(O'*J') <X ‘f'é CC4(C_2) and {X,Ot,»} s Cca(é;)'

We also observe that Ce, (e, is normalized by X. Since o0, acts fixed-point freely
on C;Ce, (&)X, its Fitting height is at most 2 by the Corollary. Therefore X central-
izes Ce, ().

If C,C,C3X < G, then f(C1C2C3X) < 3 by induction and so [C3, X] < Ds, that
is, X < D,. Then X stabilizes every homogeneous C3/ D3 component of Co. We also
observe that [, C3/D;} = W for any such component W as [0, Cs/Ds = G 1t

follows that there is no a,-invariant homogeneous C3/D3-component of (; because
[Ca/ Dy, ] = Cs/Ds must act trivially on any such component. Now put

Y=WaW ® - &W

where I is a homogeneous Cs/Ds-component of &y Since [Cc, (), X] =1, the

group X acts triviafly on

Cy(ocr)={w+w°"+---+w°‘:"lfwe wh

and hence on W, as (X, «] < Ce,(Cy). Thus X acts trivially on C,, which is not the
case. It follows that € C2CsX = G, that is, X = Cy. Now C, centralizes Cenloy).

Next observe that [Cs3/D3, ] # 1 since_ [Cy,etq) = Cs and let ¥ be an irreducible
(C3/D3) Ca(Crtyy % {&r)-submodule of C; on which [C3/Ds, ] acts non-trivially.
Now [V, C3/Ds] = V and we have Vicstz = W ® - @ W, where the modules W;
are homogeneous Cs/Ds-components of V. We see that no W; is «-invariant, since
(W, C3/Ds) = W for each i and [Ca/ D3, ] = C3/D3. Put

Vi=WeWr e oW
foreachi. Thus V=Y @ --- P Y, Since
Crilo) = {wHw* + - 4w [we W}
is centralized by Ci, we have Cyla) < YN Y} for all x Cs. This gives that

Y;= Y7 for all x € C4. Let Q@ = {¥1,..., ¥:}. We observed that Cy<o,» fixes every
element of Q. Hence

t=1Q| = [{ag) : Ny (1)

and so ¢ is either 1 or g.
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If t=1, then V' =¥ and so s=r; thus o, stabilizes each W, It follows that
[C3/Ds, 0] acts trivially on each W; and hence on ¥, which is not the case. Thus
t = g, so that no W, is ag-invariant. Then

Crlagen) = {u+u™ + - +u% JueCy (o)} # 1,

a contradiction which completes the proof.
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