Finite groups admitting fixed-point free automorphisms of order pqr

Gülin Ercan and İsmail Ş. Güloğlu

(Communicated by E. I. Khukhro)

1 Introduction

Let G be a finite group and A be a group of operators of G with $C_G(A) = 1$. In [14], Turull proved that if (|G|, |A|) = 1 then (with certain exceptions for A), the Fitting height of G is bounded by the length of the longest chain of subgroups of A. We expect a similar bound for the Fitting height of G when the assumption (|G|, |A|) = 1 is replaced by the assumption that A is nilpotent (see [1]). In [9], Cheng Kei-Nah showed that G is metanilpotent if A is a cyclic group whose order is a product of two distinct primes. Here we obtain a result that takes Kei-Nah's work one step further:

Theorem. Let G be a finite group admitting a fixed-point free automorphism α of order par for pairwise distinct primes p, q and r. Then G has Fitting height at most 3.

2 Preliminary results

First we state a well-known fact which is frequently used in this paper.

Lemma 1 (see [5]). Let p, q, r be distinct primes and G = QA where A is cyclic of order p and Q is a q-group with [Q, A] = Q. Assume further that G acts on a vector space V over a field k of characteristic r in such a way that [V, A] = V. If $[V, Q] \neq 0$, then q = 2.

Lemma 2. Let H = ST, where $S \triangleleft H$, S is a p-group and T is a t-group for distinct primes p and t, and let α be an automorphism of H of order p^n which leaves T invariant. Assume that $C_{T/T_0}(z) = 1$ where $T_0 = C_T(S)$ and $z = \alpha^{p^{n-1}}$. Let V be a $kH \langle \alpha \rangle$ -module on which \overline{S} acts faithfully, and k a field of characteristic different from p. If $[C_V(z), C_S(z)] = 1$, then [S, T] = 1.

Proof. We set $G = H\langle \alpha \rangle$ and argue by induction on $|G| + \dim_k V$. We may assume that n = 1.

Finite groups admi

(1) $S/\Phi(S)$ is an irreducible $T\langle\alpha\rangle$ -module with [S,T]=S, $[\Phi(S),T]=1$ and S is special. Moreover $\Phi(T/T_0) = 1$ and $\langle \alpha \rangle$ acts irreducibly on T/T_0 .

Let S_1 be a minimal element of

$$\{A \mid A \leq S, A \text{ is } T\langle \alpha \rangle \text{-invariant and } [A, T] \neq 1\}.$$

Then $S_1/\Phi(S_1)$ is an irreducible $T\langle\alpha\rangle$ -module with $[S_1,T]=S_1, [\Phi(S_1),T]=1$ and S_1 is special. By induction we see that $S_1 = S$.

Next let T_1/T_0 be a minimal proper $\langle \alpha \rangle$ -invariant subgroup of T/T_0 on which $\langle \alpha \rangle$ acts non-trivially. Then $\Phi(T_1/T_0) = 1$. Induction applied to $S[T_1, \alpha]$ on V gives that $[T_1, \alpha] \leq T_0$, which is impossible. Hence $[T_1, \alpha] = T = T_1$.

(2) S is abelian.

Assume the contrary. Then $\Phi(S) \neq 1$ and so $C_{\Phi(S)}(\alpha) \neq 1$. Now

$$U = [V, C_{\Phi(S)}(\alpha)] \neq 1$$
 and $C_U(C_{\Phi(S)}(\alpha)) = 1$.

This shows that $C_U(\alpha) = 1$, as $[C_U(\alpha), C_{\Phi(S)}(\alpha)] = 1$.

If char k = t then for any irreducible G-submodule W of U, $[W, T_0]$ is Ginvariant and properly contained in W. Hence $[W, T_0] = 1$. Set K = Ker(G on W) and $\overline{G} = G/K$. Now \overline{T} is abelian and $[\overline{T}, \alpha] = \overline{T} \leq [\overline{H}, \alpha]$. In this case, we may consider the action of \bar{G} on W and apply [4, Lemma 1.1]. We conclude that $[[\bar{H},\alpha],\bar{S}/\Phi(\bar{S})]=1$, which is impossible as $[\bar{S},\bar{T}]=\bar{S}$. Thus char $k \not \mid |G|$.

Consider $T\langle \alpha \rangle$ on U. Now $[U,T] \neq 1$, because otherwise [U,S] = 1 and so $[V, S, C_{\Phi(S)}(\alpha)] = 1$ which is not the case. Using Lemma 1 we get t = 2 as $C_U(\alpha) = 1$. On the other hand, let R be a maximal abelian normal subgroup of the p-group $S(\alpha)$. Now $R = C_{S(\alpha)}(R)$. If $\alpha \notin R$, then $[R, \alpha] \neq 1$. If $Y = [U, [R, \alpha]] = 1$, then $[R,\alpha]\leqslant C_S(U)\leqslant \Phi(S)$ and so $1\neq C_{[R,\alpha]}(\alpha)\leqslant C_{\Phi(S)}(\alpha)$. It follows that

$$C_{\mathcal{V}}(C_{\phi(S)}(\alpha)) \leqslant C_{\mathcal{V}}(C_{[R,\alpha]}(\alpha)).$$

As $V = U \oplus C_V(C_{\Phi(S)}(\alpha))$, we get $[V, C_{[R,\alpha]}(\alpha)] = 1$ which is a contradiction. Thus $Y \neq 1$. As $[Y, [R, \alpha]] = Y$, by [6, Lemma 4.5] we have $|Y| = |C_Y(\alpha)|^p$, which is impossible since $C_{\mathcal{F}}(\alpha) = 1$. Therefore $[R, \alpha] = 1$, that is, $\alpha \in R$. It follows that

$$[S\langle\alpha\rangle,\alpha,\alpha] \leqslant [S\langle\alpha\rangle,R,\alpha] \leqslant [R,\alpha] = 1$$

and so the minimal polynomial of α on $S/\Phi(S)$ has degree at most 2. On the other hand, [7, Theorem IX. 1.10] gives that the minimal polynomial of α on $S/\Phi(S)$ is x^p-1 as T/T_0 is abelian. Consequently p=2=t, a contradiction. Therefore S is

As V is a completely reducible S-module we have $V|_S = V_1 \oplus \cdots \oplus V_l$, where V_1, \ldots, V_l are the homogeneous S-components of V and $T\langle \alpha \rangle$ permutes V_1, \ldots, V_l .

(3) There exists an $\langle \alpha \rangle$ -invariant homogeneous S-component.

If no V_i is α -invariant, put

 $\{v +$

for i = 1, ..., l, the subgroup not the case.

- (4) Each $T\langle\alpha\rangle$ -orbit of $\{V_1,$ Let U and W belong 1 fixed by α . Since $U^{\gamma} = W$ $yN_T(U) \in C_{T/N_T(U)}(\alpha)$. As (
- (5) S acts trivially on each T Let V_i be a $T\langle \alpha \rangle$ -invarian reducible $ST\langle\alpha\rangle$ -submodule mogeneous and so S/Ker(S)
- (6) $C_S(\alpha)$ centralizes every ϵ ment.

An orbit having no $\langle \alpha \rangle$ -ir and the same argument as ir

(7) Let $\{y_0 = 1, y_1, \dots, y_m\}$ homogeneous S-component. '.

Consider the $T\langle\alpha\rangle$ -orbit $\langle \alpha \rangle$ -invariant, it is a union α $C_S(\alpha) \leq \operatorname{Ker}(S \text{ on } U^{\gamma_j}) \text{ for }$

(8) Finally, let L be the int invariant homogeneous S-c

we have $C_{\mathcal{S}}(\alpha) \cap L = 1$ by (:

Hence

 $C_S(\alpha) \cap \langle$

This gives that $C_S(\alpha)^{\gamma_i} \cap \langle C$

a $T(\alpha)$ -submodule of S. W

= S, $[\Phi(S), T] = 1$ and S is on T/T_0 .

 $[T, T] \neq 1$.

$$T = S_1, [\Phi(S_1), T] = 1$$
 and

group of T/T_0 on which $\langle \alpha \rangle$ I to $S[T_1, \alpha]$ on V gives that

 $\neq 1$. Now

$$\mathfrak{Z}(\alpha) = 1.$$

e W of U, $[W, T_0]$ is G-= 1. Set K = Ker(G on W) \bar{I}, α . In this case, we may na 1.1]. We conclude that hus char $k \not\mid G$. therwise [U, S] = 1 and so 1 we get t = 2 as $C_U(\alpha) = 1$. il subgroup of the p-group If $Y = [U, [R, \alpha]] = 1$, then It follows that

ich is a contradiction. Thus $|Y| = |C_Y(\alpha)|^p$, which is im- $\equiv R$. It follows that

= 1

ree at most 2. On the other ynomial of α on $S/\Phi(S)$ is ontradiction. Therefore S is

 $V|_S = V_1 \oplus \cdots \oplus V_l$, where $T\langle\alpha\rangle$ permutes V_1,\ldots,V_l .

int.

If no V_i is α -invariant, put $X_i = V_i \oplus V_i^{\alpha} \oplus \cdots \oplus V_i^{\alpha^{p-1}}$ for $i = 1, \ldots, l$. Since

$$\{v+v^{\alpha}+\cdots+v^{\alpha^{p-1}}\mid v\in V_i\}\leqslant C_{X_i}(\alpha)$$

for i = 1, ..., l, the subgroup $C_S(\alpha)$ acts trivially on each V_i and hence on V, which is not the case.

(4) Each $T\langle \alpha \rangle$ -orbit of $\{V_1, \ldots, V_l\}$ contains at most one $\langle \alpha \rangle$ -invariant element. Let U and W belong to the same $T(\alpha)$ -orbit, and suppose that both are fixed by α . Since $U^{\gamma} = W$ for some $\gamma \in T(\alpha)$, we have $[\gamma, \alpha] \in N_T(U)$ and so $yN_T(U) \in C_{T/N_T(U)}(\alpha)$. As $C_T(\alpha) \le T_0 \le N_T(U)$, we see that $y \in N_T(U)$.

(5) S acts trivially on each $T\langle\alpha\rangle$ -invariant homogeneous S-component.

Let V_i be a $T(\alpha)$ -invariant subspace on which S acts non-trivially. Choose an irreducible $ST\langle\alpha\rangle$ -submodule M of V_i on which S acts non-trivially. Now $M|_S$ is homogeneous and so [S/Ker(S on M), T] = 1, which is not the case.

(6) $C_S(\alpha)$ centralizes every element of a $T(\alpha)$ -orbit containing no (α) -invariant element.

An orbit having no $\langle \alpha \rangle$ -invariant element can be written as a union of $\langle \alpha \rangle$ -orbits, and the same argument as in (3) gives the result.

(7) Let $\{y_0 = 1, y_1, \dots, y_m\}$ be a transversal to T_0 in T and let U be a $T_0\langle \alpha \rangle$ -invariant

homogeneous S-component. Then $C_S(\alpha)^{y_j^{-1}} \leq \operatorname{Ker}(S \text{ on } U)$ for $j = 1, \ldots, m$. Consider the $T\langle \alpha \rangle$ -orbit $\{U, U^{y_1}, \ldots, U^{y_m}\}$ containing U. As $\{U^{y_1}, \ldots, U^{y_m}\}$ is $\langle \alpha \rangle$ -invariant, it is a union of $\langle \alpha \rangle$ -orbits and the same argument as in (3) gives that $C_S(\alpha) \leqslant \operatorname{Ker}(S \text{ on } U^{\gamma_j})$ for $j = 1, \ldots, m$, that is, $C_S(\alpha)^{\gamma_j^{-1}} \leqslant \operatorname{Ker}(S \text{ on } U)$.

(8) Finally, let L be the intersection of the kernels of the actions of S on all $\langle \alpha \rangle$ invariant homogeneous S-components which are not $T\langle\alpha\rangle$ -invariant. As

$$[V, C_S(\alpha)] \neq 1$$
,

we have $C_S(\alpha) \cap L = 1$ by (5) and (6). Also (7) shows that

$$\langle C_S(\alpha)^t | t \in T - T_0 \rangle \leqslant L.$$

Hence

$$C_S(\alpha) \cap \langle C_S(\alpha)^t | t \in T - T_0 \rangle \leqslant C_S(\alpha) \cap L = 1.$$

This gives that $C_S(\alpha)^{y_i} \cap \langle C_S(\alpha)^{y_j} | y_i \neq y_j \rangle = 1$ and so

$$\sum_{\tilde{t}\in T/T_0} C_S(\alpha)^{\tilde{t}} = \bigoplus_{\tilde{t}\in T/T_0} C_S(\alpha)^{\tilde{t}},$$

a $T(\alpha)$ -submodule of S. We conclude that

$$S = \bigoplus_{\tilde{t} \in T/T_0} C_S(\alpha)^{\tilde{t}}$$

as S is irreducible, and so $|S| = |C_S(\alpha)|^{|T/T_0|}$. On the other hand, $[S, [T/T_0, \alpha]] = S$ and so $|S| = |C_S(\alpha)|^p$ by [6, Lemma 4.5]. As $t \neq p$ we get a contradiction and this completes the proof.

We write f(G) for the Fitting length of a group G.

Corollary 3 (Cheng Kei-Nah [9]). Let G be a finite group admitting a fixed-point free automorphism α of order pq, where p and q are distinct primes. Then $f(G) \leq 2$.

Proof. Set $\langle \alpha \rangle = \langle \alpha_p \rangle \times \langle \alpha_q \rangle$ where $|\alpha_p| = p$ and $|\alpha_q| = q$. We argue by induction on |G|. As $C_G(\alpha) = 1$, for any prime dividing |G| we have a unique $\langle \alpha \rangle$ -invariant Sylow subgroup of G and so we obtain an $\langle \alpha \rangle$ -tower (C_i) (i = 1, 2, 3) in the sense of [13] except that we have reversed the order of the indices, that is, we let C_i normalize C_i for i < j. By induction we have $G = C_1 C_2 C_3$ where $C_1 = F(G)$ is the unique minimal normal subgroup of G. By the Fong-Swan Theorem we may assume that $(|C_1|, |C_2C_3\langle\alpha\rangle|) = 1$. If $pq \nmid |C_2C_3|$, then we know the result. Hence assume that pdivides $|C_2C_3|$. If G is a q'-group, [13, Theorem 3.1] implies that

$$[C_{C_1}(\alpha_q), C_{C_3}(\alpha_q)] \neq 1.$$

As $C_G(\alpha_q)$ is nilpotent, we get that $\pi(C_1) = \pi(C_3)$, which is not the case. Hence p and q both divide $|C_2C_3|$. Let $\pi(C_2) = \{p\}$ and $\pi(C_3) = \{q\}$. Now $C_{C_3}(\alpha_p) = 1$. As $[C_{C_1}(\alpha_p), C_{C_2}(\alpha_p)] = 1$, we may apply Lemma 2 to $C_2C_3\langle \alpha_p \rangle$ on C_1 and obtain that $[C_2, C_3] = 1$, a contradiction.

Lemma 4. Let VST be an $\langle \alpha \rangle$ -tower in the sense of [13] where

- (i) $\langle \alpha \rangle = \langle \alpha_p \rangle \times \langle \alpha_q \rangle$ with $|\alpha_p| = p^n$ and $|\alpha_q| = q$ for distinct primes p and q,
- (ii) $\pi(S) = \{p\}, \ \pi(T) = \{t\} \ with \ t \notin \{p,q\}, \ \pi(V) \notin \{p,q\},$
- (iii) $\Phi(\Phi(S)) = 1$, [S, T] = S, $[\Phi(S), T] = 1$,
- (iv) $C_V(\alpha) = 1$, $[S, \alpha_q] = S$ and [T, z] = T where $z = \alpha_p^{p^{n-1}}$. Then $[C_{\mathcal{V}}(\alpha_q), C_T(\alpha_q)] \neq 1$.

Proof. Let $T_0 = C_T(S)$. If there exists $\bar{t} \in C_{T/T_0}(\alpha_q)$ with $|\bar{t}| > 2$, then we get $[C_{\mathcal{V}}(\alpha_q), C_T(\alpha_q)] \neq 1$ as desired, by [13, Theorem 2.1.B]. So either $C_T(\alpha_q) \leqslant T_0$ or $C_{T/T_0}(\alpha_q)$ is an elementary abelian 2-group. The first is impossible since

$$C_{S/\Phi(S)}(\alpha_q) = 1$$
 and $[S, T] = S$.

Hence t=2, that is, $p \neq 2$. As $t \neq q$ and $C_T(\alpha_q) \nleq T_0$, we may assume that

Now we consider V the only possible towe:

(a) $C_S(\alpha_q)C_T(\alpha_q)$

Now (a) is impossible s Then $[[C_S(\alpha_q), z], C_V(\alpha)]$ of [3, Lemma 1.1] to (and so $[C_V(\alpha_q), C_T(\alpha_q)]$

Set $\langle \alpha \rangle = \langle \alpha_p \rangle \times \langle \alpha_q \rangle$ mal counter-example t have a unique $\langle \alpha \rangle$ -inv: $\langle \alpha \rangle$ -tower (C_i) (i = 1, 1)

- (i) $\pi(C_i) = \{p_i\}$ cons i = 1, 2, 3;
- (ii) C_i is $\langle \alpha \rangle$ -invarian i = 1, 2, 3;
- (iii) $\bar{C}_i = C_i/D_i$ is a spe acts irreducibly for
- (iv) $[C_i, C_{i+1}] = C_i$ for

Then by induction we minimal normal subgr an irreducible $H\langle\alpha\rangle$ -n $(|C_1|, |H\langle \alpha \rangle|) = 1.$

Let W be a homogen $B = N_{\langle \alpha \rangle}(W)$ and $\overline{H} =$ \overline{H} -module and $C_W(B)$: If (|H|, |B|) = 1, we s $C_B(\operatorname{supp}_B(\overline{H})) \neq 1$ and But $C_B(\overline{C_2}) = 1$, becaus tralizer of a Sylow subg since $f(\overline{H}) = 3$. This cc

On the other hand if irreducible by [10, Theo a contradiction. Thus 1 Now $C_Y(B) = 1$. If |B| $C_H(C_1) = 1$, and now the $|\pi(B)| = 2$. Let $|B| = p_e$ Observe that $D_2 = 1$ and we get a contradiction and this

oup admitting a fixed-point free it primes. Then $f(G) \leq 2$.

= q. We argue by induction on e a unique $\langle \alpha \rangle$ -invariant Sylow (i = 1, 2, 3) in the sense of [13] that is, we let C_j normalize C_i $C_1 = F(G)$ is the unique minheorem we may assume that he result. Hence assume that p uplies that

hich is not the case. Hence $p = \{q\}$. Now $C_{C_3}(\alpha_p) = 1$. As $C_3(\alpha_p)$ on C_1 and obtain that

where

distinct primes p and q,

 $q\},$

with $|\bar{t}| > 2$, then we get]. So either $C_T(\alpha_q) \leqslant T_0$ or mpossible since

S.

 T_0 , we may assume that

Now we consider $VST\langle z\rangle$ as an $\langle \alpha_q \rangle$ -tower. Since $p \neq 2$, by [13, Theorem 3.1], the only possible towers for centralizers inside this tower are the following:

(a)
$$C_S(\alpha_q)C_T(\alpha_q)\langle z \rangle$$
; (b) $C_V(\alpha_q)C_S(\alpha_q)\langle z \rangle$; (c) $C_V(\alpha_q)C_T(\alpha_q)\langle z \rangle$.

Now (a) is impossible since $C_S(\alpha_q) \leq \Phi(S)$ and $[\Phi(S), T] = 1$. Assume that (b) holds. Then $[[C_S(\alpha_q), z], C_V(\alpha_q)] \neq 1$. As α_p acts fixed-point freely on $C_V(\alpha_q)$, an application of [3, Lemma 1.1] to $C_S(\alpha_q)\langle \alpha_p \rangle$ on $C_V(\alpha_q)$ leads to a contradiction. Thus (c) holds and so $[C_V(\alpha_q), C_T(\alpha_q)] \neq 1$.

3 Proof of the Theorem

Set $\langle \alpha \rangle = \langle \alpha_p \rangle \times \langle \alpha_q \rangle \times \langle \alpha_r \rangle$ where $|\alpha_p| = p$, $|\alpha_q| = q$ and $|\alpha_r| = r$. Let G be a minimal counter-example to the theorem. As $C_G(\alpha) = 1$, for any prime dividing |G| we have a unique $\langle \alpha \rangle$ -invariant Sylow subgroup of G, and so we obtain an irreducible $\langle \alpha \rangle$ -tower (C_i) (i = 1, 2, 3, 4) in the sense of [13] satisfying the following:

- (i) $\pi(C_i) = \{p_i\}$ consists of a single prime for i = 1, 2, 3, 4 and $p_i \neq p_{i+1}$ for i = 1, 2, 3;
- (ii) C_i is $\langle \alpha \rangle$ -invariant for i = 1, 2, 3, 4 and C_i is normalized by C_j for j > i and i = 1, 2, 3;
- (iii) $\bar{C}_i = C_i/D_i$ is a special group on the Frattini factor group of which $(\prod_{j>i} C_j)\langle\alpha\rangle$ acts irreducibly for i=1,2,3 where $D_i=C_{C_i}(C_{i-1}/D_{i-1})$ for i>1 and $D_1=1$;
- (iv) $[C_i, C_{i+1}] = C_i$ for i = 1, 2, 3.

Then by induction we see that $G = C_1C_2C_3C_4$ where $C_1 = F(G)$ is the unique minimal normal subgroup of G. Put $H = C_2C_3C_4$. Now $C_H(C_1) = 1$. As C_1 is an irreducible $H(\alpha)$ -module, by the Fong-Swan Theorem, we may assume that $(|C_1|, |H(\alpha)|) = 1$.

Let W be a homogeneous H-component of C_1 on which C_2 acts non-trivially. Put $B = N_{\langle \alpha \rangle}(W)$ and $\overline{H} = H/\text{Ker}(H \text{ on } W)$. Then W is a homogeneous and faithful \overline{H} -module and $C_W(B) = 0$ as $C_{C_1}(\alpha) = 1$. Therefore $B \neq 1$.

If (|H|, |B|) = 1, we see that $C_W(C_B(\operatorname{supp}_B(\overline{H})) = 0$ by [12, Proposition 4.5]. Then $C_B(\operatorname{supp}_B(\overline{H})) \neq 1$ and $1 \neq \overline{C_2} \leq \operatorname{supp}_B(\overline{H})$. It follows that $C_B(\operatorname{supp}_B(\overline{H})) \leq C_B(\overline{C_2})$. But $C_B(\overline{C_2}) = 1$, because otherwise $[\overline{H}, C_B(\overline{C_2})] = 1$, which is not the case as the centralizer of a Sylow subgroup of $\langle \alpha \rangle$ has Fitting height at most 2 by the Corollary and since $f(\overline{H}) = 3$. This contradiction shows that $(|H|, |B|) \neq 1$.

On the other hand if $B=\langle\alpha\rangle$, then C_1 is a homogeneous H-module and so it is irreducible by [10, Theorem B.7.11]. Then we apply [8, Theorem] and get $C_H(\alpha) \neq 1$, a contradiction. Thus $1 \neq B < \langle\alpha\rangle$. Set $\langle\alpha\rangle = B \oplus B'$ and consider $Y = C_1C_H(B')$. Now $C_Y(B) = 1$. If |B| is a prime, then Y is nilpotent. It follows that $C_H(B') = 1$ as $C_H(C_1) = 1$, and now the Corollary gives that $f(H) \leq 2$ which is not the case. Thus $|\pi(B)| = 2$. Let |B| = pq and let $\overline{C_i/D_i}$ denote the Frattini factor group of C_i/D_i . Observe that $D_2 = 1$ and that C_4/D_4 is elementary abelian. Also note that $C_H(\alpha_r)$ is

nilpotent because $C_1C_H(\alpha_r)$, as a group on which $\alpha_p\alpha_q$ acts fixed-point freely, is of Fitting height at most 2.

We shall frequently use [13, Theorem 3.1], which implies the following:

Let A be a group of prime order acting on a group G with (|G|, |A|) = 1. Let (C_i) (i = 1, ..., h) be an A-tower and assume that A centralizes C_k (possibly with k = h + 1 and $C_{h+1} = 1$). Then for some $j \leq k$ the tower

$$(C_{C_i}(A))$$
 $(i = 1, ..., j - 1, j + 1, ..., h)$

satisfies $[C_{C_s}(A), C_{C_t}(A)] \neq 1$ for $s \neq t$. If $|C_k|$ is odd, we may take j < k.

We call $(C_{C_i}(A))$ (i = 1, ..., j - 1, j + 1, ..., h) a possible A-tower inside $C_G(A)$. (1) p and q divide |H|.

Suppose that p divides |H| but q does not. Then [13, Theorem 3.1] shows that the only possible tower inside $C_G(\alpha_q)$ is $C_{C_1}(\alpha_q)C_{C_2}(\alpha_q)C_{C_4}(\alpha_q)$ and $\pi(C_2)=\pi(C_4)$ as $f(C_G(\alpha_q)) \leq 2$, by the Corollary.

First assume that $\pi(C_2) = \pi(C_4) = \{p\}$. Here we have $D_4 = C_{C_4}(C_2)$ and $[C_4, \alpha_p] \leq D_4$. If $C_{\overline{C_3/D_3}}(\alpha_p) \neq 1$, then α_p acts trivially on $C_2(C_3/D_3)(C_4/D_4)$ and so $\alpha_q \alpha_r$ acts fixed-point freely on it, and this is impossible by the Corollary. Hence $C_{\overline{C_3/D_3}}(\alpha_p) = 1$. Also observe that $[C_4, \alpha_q] \leq D_4$: otherwise $C_{C_4}(\alpha_q) \leq D_4 = C_{C_4}(C_2)$ and this is not the case as $[C_{C_2}(\alpha_q), C_{C_4}(\alpha_q)] \neq 1$. We may assume that $[C_4, \alpha_q] = 1$ as $\pi(C_4) \neq \{q\}$ which implies that $C_{C_4}(\alpha_r) = 1$. If $\pi(C_3) \neq \{r\}$, then G is an r'-group and applying [13, Theorem 3.1] we see that the only possible tower inside $C_G(\alpha_r)$ is $C_{C_1}(\alpha_r)C_{C_2}(\alpha_r)C_{C_4}(\alpha_r)$. Consequently $C_{C_4}(\alpha_r) \neq 1$ which is not the case. Thus $\pi(C_3) = \{r\}$. If r = 2 then, as α_r acts fixed-point freely on $C_{C_2}(\alpha_q)C_{C_4}(\alpha_q)$, we must have $[C_{C_2}(\alpha_q), C_{C_4}(\alpha_q)] = 1$ and this is not the case. Hence $r \neq 2$. Now an application of Lemma 2 to $\overline{C_2}(C_3/D_3)C_4\langle \alpha_r \rangle$ gives that

$$[C_{\overline{C_2}}(\alpha_r), C_{C_3/D_3}(\alpha_r)] \neq 1.$$

If $[C_{\overline{C_2}}(\alpha_r), [C_{C_3/D_3}(\alpha_r), \alpha_q]] \neq 1$, then r = 2 by Lemma 1, which is not the case. Hence

$$[C_{\overline{C_2}}(\alpha_r), C_{C_3/D_3}(\alpha_r\alpha_q)] \neq 1 \quad \text{as} \quad C_{C_3/D_3}(\alpha_r) = [C_{C_3/D_3}(\alpha_r), \alpha_q]C_{C_3/D_3}(\alpha_r\alpha_q).$$

Now $C_{C_3/D_3}(\alpha_r \alpha_q) = C_{X/D_3}(\alpha_q) = C_X(\alpha_q)D_3/D_3$ where $C_{C_3/D_3}(\alpha_r) = X/D_3$. So

$$[C_{\overline{C_2}}(\alpha_r), C_X(\alpha_q)] \neq 1.$$

Note that X normalizes $C_{C_2}(\alpha_r)$ by the three subgroup lemma as $[\alpha_r, C_{C_2}(\alpha_r), X] = 1$ and $[X, \alpha_r, C_{C_2}(\alpha_r)] \leq [D_3, C_{C_2}(\alpha_r)] = 1$. But then $C_1C_{C_2}(\alpha_r)C_X(\alpha_q)$ is a group of Fitting height 3 on which $\alpha_p\alpha_q$ acts fixed-point freely, a contradiction by the Corollary. Thus $\{s\} = \pi(C_2) = \pi(C_4) \neq \{p\}$ and $\pi(C_3) = \{p\}$. Now $C_{C_4}(\alpha_p\alpha_q) \neq 1$, because otherwise α_p acts fixed-point freely on $C_{C_1}(\alpha_q)C_{C_4}(\alpha_q)$ which is impossible as $[C_{C_1}(\alpha_q), C_{C_4}(\alpha_q)] \neq 1$. Then $s \neq r$ and $[C_4, \alpha_r] \neq 1$.

It follows that G is an r'-grou [13, Theorem 3.1] shows that $C_{G}(\alpha_{r})$, that is, $[C_{C_{2}}(\alpha_{r}), C_{C_{4}}(\alpha_{r})]$

(2) r divides |H|.

Assume the contrary. Then a tower inside $C_G(\alpha_r)$ implyi $f(C_G(\alpha_r)) \leq 2$ by the Corollar and $\pi(C_3) = \{q\}$.

If $[C_4, \alpha_r] \nleq D_4$, we get C_C may assume that $[C_4, \alpha_r] = 1$ since $C_{C_2C_4}(\alpha_q\alpha_r) = 1$ and C_C otherwise $[C_3, \alpha_r] = 1$ as $\pi(C_3)$ which is impossible by the Co. On the other hand Lemma 2

If C_3/D_3 is abelian, then $\overline{C_2}(C_3/D_3)(C_4/D_4)$ which is non-abelian. Let W be a h $(C_3/D_3)(C_4/D_4)\langle\alpha\rangle$ -module stabilizer of any other homo $N \neq \langle\alpha\rangle$, because otherwise

As $C_{\overline{C_2}}(\alpha_r) \neq 1 \neq C_{\overline{C_2}}(\alpha_q)$, properly contained in N, as the first case $C_{\overline{C_2}}(\alpha_q) = 1$ and by our observations above.

 $C_{C_3/D}$

It follows that $[C_{\overline{C_2}}(\alpha_r), \Phi(C_2)]$

a contradiction.

 $(3) \ \pi(C_2) \subset \{p,q\}.$

Now H is a $\{p,q,r\}$ -gr which $\alpha_p\alpha_q$ acts fixed-poin $[C_2, C_{C_3}(\alpha_r)] = 1$ by the C $\pi(C_4) \neq \{r\}$, we may assurfixed-point freely on C_1C_2 (

(4) $\pi(C_3) \subset \{p,q\}$. Assume that $\pi(C_2) = \{j\}$ $[C_4, \alpha_r] = 1$, then $C_{C_4}(\alpha_p) = 1$ that $C_{C_1}(\alpha_p)C_{C_3}(\alpha_p)$ is the c 1 $\alpha_p \alpha_q$ acts fixed-point freely, is of

h implies the following: group G with (|G|, |A|) = 1. Let t A centralizes C_k (possibly with tower

$$i+1,\ldots,h$$

Id, we may take j < k.

t possible A-tower inside $C_G(A)$.

en [13, Theorem 3.1] shows that $\alpha_q C_{C_4}(\alpha_q)$ and $\pi(C_2) = \pi(C_4)$ as

we have $D_4 = C_{C_4}(C_2)$ and ly on $C_2(C_3/D_3)(C_4/D_4)$ and so ossible by the Corollary. Hence herwise $C_{C_4}(\alpha_q) \leq D_4 = C_{C_4}(C_2)$ Ve may assume that $[C_4, \alpha_q] = 1$ in $\pi(C_3) \neq \{r\}$, then G is an r'-the only possible tower inside $(\alpha_r) \neq 1$ which is not the case. In freely on $C_{C_2}(\alpha_q)C_{C_4}(\alpha_q)$, we he case. Hence $r \neq 2$. Now an hat

1.

11, which is not the case. Hence

$$C_{C_3/D_3}(\alpha_r), \alpha_q] C_{C_3/D_3}(\alpha_r \alpha_q).$$

e
$$C_{C_3/D_3}(\alpha_r) = X/D_3$$
. So

b lemma as $[\alpha_r, C_{C_2}(\alpha_r), X] = 1$ $C_{C_2}(\alpha_r)C_X(\alpha_q)$ is a group of α_r , a contradiction by the Corf α_r . Now $C_{C_4}(\alpha_p\alpha_q) \neq 1$, becceived which is impossible as

It follows that G is an r'-group and $C_{C_4}(\alpha_r) \leq D_4 = C_{C_4}(C_2)$. But an application of [13, Theorem 3.1] shows that $C_{C_1}(\alpha_r)C_{C_2}(\alpha_r)C_{C_4}(\alpha_r)$ is the only possible tower inside $C_G(\alpha_r)$, that is, $[C_{C_2}(\alpha_r), C_{C_4}(\alpha_r)] \neq 1$, a contradiction.

(2) r divides |H|.

Assume the contrary. Then as in the above argument, $C_{C_1}(\alpha_r)C_{C_2}(\alpha_r)C_{C_4}(\alpha_r)$ is a tower inside $C_G(\alpha_r)$ implying that $[C_{C_2}(\alpha_r), C_{C_4}(\alpha_r)] \neq 1$ and $\pi(C_2) = \pi(C_4)$ as $f(C_G(\alpha_r)) \leq 2$ by the Corollary. Now H is a $\{p,q\}$ -group; let $\pi(C_2) = \pi(C_4) = \{p\}$ and $\pi(C_3) = \{q\}$.

If $[C_4, \alpha_r] \nleq D_4$, we get $C_{C_4}(\alpha_r) \leqslant C_{C_4}(C_2) = D_4$ which is not the case. Thus we may assume that $[C_4, \alpha_r] = 1$ as $\pi(C_4) \neq \{r\}$ and so $C_{C_4}(\alpha_q) = 1$. We have $q \neq 2$, since $C_{C_2C_4}(\alpha_q\alpha_r) = 1$ and $C_{C_2C_4}(\alpha_r)$ is non-abelian. Moreover $C_{\overline{C_3/D_3}}(\alpha_r) = 1$, since otherwise $[C_3, \alpha_r] = 1$ as $\pi(C_3) \neq \{r\}$ and so $\alpha_p\alpha_q$ acts fixed-point freely on $C_1C_3C_4$, which is impossible by the Corollary. Then by Lemma 1 we have $C_{\overline{C_2}}(\alpha_r) \neq 1$ as $q \neq 2$. On the other hand Lemma 2 applied to $\overline{C_2}(C_3/D_3)C_4\langle \alpha_q \rangle$ gives that $C_{\overline{C_2}}(\alpha_q) \neq 1$.

If C_3/D_3 is abelian, then $C_{C_3/D_3}(\alpha_r)=1$ and so $\alpha_q\alpha_r$ acts fixed-point freely on $\overline{C_2}(C_3/D_3)(C_4/D_4)$ which is not the case by the Corollary. Therefore C_3/D_3 is non-abelian. Let W be a homogeneous $\Phi(C_3/D_3)$ -component of the irreducible $(C_3/D_3)(C_4/D_4)\langle\alpha\rangle$ -module $\overline{C_2}$. Set $N=N_{\langle\alpha\rangle}(W)$. Note that N coincides with the stabilizer of any other homogeneous component and $C_{\overline{C_2}}(N)=1$ and $N\neq 1$. Also $N\neq\langle\alpha\rangle$, because otherwise $1\neq\Phi(C_3/D_3)\leqslant C_{C_3/D_3}(\alpha)$, a contradiction.

As $C_{\overline{C_2}}(\alpha_r) \neq 1 \neq C_{\overline{C_2}}(\alpha_q)$, either $N = \langle \alpha_q \alpha_r \rangle$ or $\alpha_p \in N$. If $\alpha_p \in N$, then $\langle \alpha_p \rangle$ is properly contained in N, as $\pi(C_2) = \{p\}$, i.e. either $N = \langle \alpha_p \alpha_q \rangle$ or $N = \langle \alpha_p \alpha_r \rangle$. In the first case $C_{\overline{C_2}}(\alpha_q) = 1$ and in the latter case $C_{\overline{C_2}}(\alpha_r) = 1$; and both are impossible by our observations above. Therefore $N = \langle \alpha_q \alpha_r \rangle$ and so $[\Phi(C_3/D_3), \alpha_q \alpha_r] = 1$, implying that

$$C_{C_3/D_3}(\alpha_r) = \Phi(C_3/D_3) = C_{C_3/D_3}(\alpha_q \alpha_r).$$

It follows that $[C_{\overline{C_2}}(\alpha_r), \Phi(C_3/D_3)] = 1$ as $C_H(\alpha_r)$ is nilpotent. Thus

$$1 \neq C_{\overline{C_2}}(\alpha_r) \leqslant C_{\overline{C_2}}(\Phi(C_3/D_3)) = 1,$$

a contradiction.

 $(3) \ \pi(C_2) \subset \{p,q\}.$

Now H is a $\{p,q,r\}$ -group. If $\pi(C_2) = \{r\}$, then $C_1C_2C_{C_3}(\alpha_r)$ is a group on which $\alpha_p\alpha_q$ acts fixed-point freely. It follows that $[C_2,C_{C_3}(\alpha_r),C_1]=1$ and so $[C_2,C_{C_3}(\alpha_r)]=1$ by the Corollary, that is, $C_{C_3}(\alpha_r) \leq D_3$. Thus $[C_4,\alpha_r] \leq D_4$. As $\pi(C_4) \neq \{r\}$, we may assume that $[C_4,\alpha_r]=1$. Then $C_{C_4}(\alpha_p\alpha_q)=1$ and so $\alpha_p\alpha_q$ acts fixed-point freely on $C_1C_2C_4$ which is impossible by the Corollary.

 $(4) \ \pi(C_3) \subset \{p,q\}.$

Assume that $\pi(C_2) = \{p\}$, $\pi(C_3) = \{r\}$ and $\pi(C_4) = \{q\}$. Then $[C_4, \alpha_q] \leq D_4$. If $[C_4, \alpha_r] = 1$, then $C_{C_4}(\alpha_p) = 1$ and [12, Theorem 3.1] applied to $C_3C_4\langle \alpha_p \rangle$ on C_1 gives that $C_{C_1}(\alpha_p)C_{C_3}(\alpha_p)$ is the only tower inside $C_{C_1C_3C_4}(\alpha_p)$, that is, $[C_{C_1}(\alpha_p), C_{C_3}(\alpha_p)] \neq 1$.

This contradicts the fact that $C_{C_1C_3}(\alpha_p\alpha_q)=1$ as $\pi(C_3)=\{r\}$. Therefore $[C_4,\alpha_r]\neq 1$ which implies that $[C_4, \alpha_r] = \underline{C_4}$, i.e. $C_{C_4/D_4}(\alpha_r) = 1$.

Now Lemma 2 applied to $\overline{C_2}(C_3/D_3)C_4\langle \alpha_r \rangle$ shows that $[C_{\overline{C_2}}(\alpha_r), C_{C_3/D_3}(\alpha_r)] \neq 1$. It follows that $[C_{C_2}(\alpha_r), X] \neq 1$ where $X/D_3 = C_{C_3/D_3}(\alpha_r)$. We observe that $C_{C_2}(\alpha_r)$ is normalized by X and $C_1C_2(\alpha_r)X$ is a group of Fitting height 3. But this is not the case by the Corollary since $\alpha_p \alpha_q$ acts fixed-point freely on it.

(5) The final contradiction.

By (3) and (4), we see that $\pi(C_4) = \{r\}$. Let $\pi(C_2) = \{p\}$ and $\pi(C_3) = \{q\}$. If $[C_4, \alpha_q] \leq D_4$, we may assume that $[C_4, \alpha_q] = 1$ as $\pi(C_4) \neq \{q\}$. It follows that $C_{C_4}(\alpha_p) = 1$ and $[\overline{C_3/D_3}, \alpha_q] = 1$ and so $[C_3/\overline{D_3}, \alpha_q] = 1$ by the three subgroup lemma as $\pi(C_3) = \{q\}$. Then $C_{\overline{C_2}}(\alpha_q) = 1$ because otherwise $[\overline{C_2}(C_3/D_3)C_4, \alpha_q] = 1$ and so $\langle \alpha_p \rangle \times \langle \alpha_r \rangle$ acts fixed-point freely on $\overline{C_2}(C_3/D_3)C_4$ which is impossible by the Corollary.

Now $C_1C_2C_4$ is an $(\langle \alpha_p \rangle \times \langle \alpha_q \rangle)$ -tower, where $[C_2, \alpha_q] = C_2$ and $[C_4, \alpha_p] = C_4$. We choose an irreducible $(\langle \alpha_p \rangle \times \langle \alpha_q \rangle)$ -tower $E_1 E_2 E_4$ where $[E_2, \alpha_q] = E_2$ and $[E_4, \alpha_p] = E_4$ inside this tower and apply Lemma 3. If follows that

$$[C_{C_1}(\alpha_q), C_{C_4}(\alpha_q)] \neq 1,$$

which is impossible as α_p acts fixed-point freely on $C_{C_1C_4}(\underline{\alpha_q})$. Thus $[C_4, \alpha_q] = C_4$.

Also observe that $[C_3/D_3, \alpha_p] \neq 1$, because otherwise $\overline{C_2}(C_3/D_3)C_4$ is centralized by α_p , which is impossible by the Corollary.

If $[C_{C_4}(\alpha_p), [C_3, \alpha_p]] \neq 1$, we consider $C_1[C_3, \alpha_p] C_{C_4}(\alpha_p)$ as an $(\langle \alpha_p \rangle \times \langle \alpha_q \rangle)$ tower and pass to an irreducible tower $E_1E_3E_4$ where $[\hat{E}_4, \alpha_q] = E_4$, $[\hat{E}_3, \alpha_p] = E_3$. Now $[E_4, \alpha_p] = 1$ and $C_{E_1E_4}(\alpha_p\alpha_q) = 1$. But an application of Lemma 3 gives that $[C_{E_1}(\alpha_p), C_{E_4}(\alpha_p)] \neq 1$, a contradiction. Hence $[C_{C_4}(\alpha_p), [C_3, \alpha_p]] = 1$.

On the other hand, if $[C_{C_4}(\alpha_p), C_{C_3}(\alpha_p)] \not\leq D_3$, then $\overline{C_2}C_{C_3}(\alpha_p)C_{C_4}(\alpha_p)$ is a group of Fitting height 3 on which $\alpha_q \alpha_r$ acts fixed-point freely. This contradicts the Corollary. Therefore $[C_{C_4}(\alpha_p), C_3/D_3] = 1$, that is, $C_{C_4}(\alpha_p) \leq D_4$.

We also observe that $[C_3/D_3, \alpha_r] = C_3/D_3$, because otherwise α_r centralizes $\overline{C_3/D_3}$ as it centralizes C_4/D_4 , and so α_p acts fixed-point freely on $(\overline{C_3/D_3})(C_4/D_4)$, which is impossible.

Next assume that C_3/D_3 is non-abelian and consider the Wedderburn decomposition of $\overline{C_2}$ with respect to $(C_3/D_3)C_4$. Now $\alpha_r \notin N = N_{\langle \alpha \rangle}(W)$ for any homogeneous component W, because otherwise $[\Phi(C_3/D_3), \alpha_r] = 1$ as C_3/D_3 acts faithfully on $\overline{C_2}$. Then

$$C_{\overline{C_2}}(\alpha_r) \leqslant C_{\overline{C_2}}(\Phi(C_3/D_3)) = 1,$$

because $C_H(\alpha_r)$ is nilpotent as $f(C_1C_H(\alpha_r)) \le 2$ by the Corollary and $C_H(C_1) = 1$. It follows that α_r acts fixed-point freely on $C_2C_{C_3}(\alpha_p)$ and so $C_{C_3}(\alpha_p) \leqslant D_3$. But then α_p acts fixed-point freely on $(C_3/D_3)(C_4/D_4)$, which is impossible.

This shows that $\alpha_r \notin N$. Also $N \neq \langle \alpha_p \rangle$ since $C_{\overline{C_2}}(\alpha_p) \neq 1$. Therefore either $N=\langle \alpha_q \rangle$ or $N=\langle \alpha_p \rangle \times \langle \alpha_q \rangle$, each of which implies that $C_{\overline{C_2}}(\alpha_q)=1$. But

 $\{C_{\overline{C_2}}(\mathfrak{c}$

and hence $C_{\overline{C_2}}(\alpha_q) \neq 1$ by Lemm: as $C_{C_4/D_4}(\alpha_q) = 1$. This contradict $C_{C_3/D_3}(\alpha_r) = 1$. Set $X/C_{C_4}(\overline{C_2}) =$ subgroup of C4 such that

$$C_{C_4}(\alpha_r) \leq X \not\leq C$$

We also observe that $C_{C_2}(\alpha_r)$ is on $C_1 C_{C_2}(\alpha_r) X$, its Fitting height izes $C_{C_2}(\alpha_r)$.

If $C_1C_2C_3X < G$, then $f(C_1C_3)$ is, $X \leq D_4$. Then X stabilizes eve observe that $[W, C_3/D_3] = W$ fo follows that there is no α_r -invaria $[C_3/D_3, \alpha_r] = C_3/D_3$ must act triv

Y =

where W is a homogeneous C_1 group X acts trivially on

$$C_{Y}(\alpha_{r}) = \cdot$$

and hence on W, as $[X, \alpha_r] \leqslant C$ case. It follows that $C_1C_2C_3X$ =

Next observe that $[C_3/D_3, \alpha_g]$ $(C_3/D_3)C_4(\langle \alpha_q \rangle \times \langle \alpha_r \rangle)$ -subm Now $[V, C_3/D_3] = V$ and we l are homogeneous C_3/D_3 -comp $[W_i, C_3/D_3] = W_i$ for each i an

for each i. Thus $V = Y_1 \oplus \cdots$

$$C_{Y_i}(\alpha_r)$$
:

is centralized by C4, we ha $Y_i = Y_i^x$ for all $x \in C_4$. Let § element of Ω . Hence

and so t is either 1 or q.

 C_3) = $\{r\}$. Therefore $[C_4, \alpha_r] \neq 1$

ws that $[C_{\overline{C_2}}(\alpha_r), C_{C_3/D_3}(\alpha_r)] \neq 1$. $l_1(\alpha_r)$. We observe that $C_{C_2}(\alpha_r)$ is ing height 3. But this is not the ly on it.

 C_2) = $\{p\}$ and $\pi(C_3)$ = $\{q\}$. If $\pi(C_4) \neq \{q\}$. It follows that 1 by the three subgroup lemma $\pi(\overline{C_2}(C_3/D_3)C_4, \alpha_q] = 1$ and so which is impossible by the Cor-

 $C_2, \alpha_q] = C_2$ and $[C_4, \alpha_p] = C_4$. E_2E_4 where $[E_2, \alpha_q] = E_2$ and follows that

 $_{1}C_{4}(\alpha_{q})$. Thus $[C_{4}, \alpha_{q}] = C_{4}$. se $\overline{C_{2}(C_{3}/D_{3})}C_{4}$ is centralized

 $C_4(\alpha_p)$ as an $(\langle \alpha_p \rangle \times \langle \alpha_q \rangle)$ re $[E_4, \alpha_q] = E_4$, $[E_3, \alpha_p] = E_3$.
ation of Lemma 3 gives that $\int_{\overline{C}} [C_3, \alpha_p] = 1.$

 $\overline{C_2C_{C_3}}(\alpha_p)C_{C_4}(\alpha_p)$ is a group of his contradicts the Corollary.

otherwise α_r centralizes $\overline{C_3/D_3}$ on $(\overline{C_3/D_3})(C_4/D_4)$, which is

the Wedderburn decomposi- $\langle \alpha \rangle(W)$ for any homogeneous C_3/D_3 acts faithfully on $\overline{C_2}$.

1,

Corollary and $C_H(C_1) = 1$. It o $C_{C_3}(\alpha_p) \leq D_3$. But then α_p ossible. $\overline{\underline{\zeta}}(\alpha_p) \neq 1$. Therefore either at $C_{\overline{C_2}}(\alpha_q) = 1$. But

$$[C_{\overline{C_2}}(\alpha_q),\,C_{C_3/D_3}(\alpha_q)]\neq 1$$

and hence $C_{\overline{C_2}}(\alpha_q) \neq 1$ by Lemma 2 applied to $(C_3/D_3)C_4(\langle \alpha_p \rangle \times \langle \alpha_q \rangle)$ on $\overline{C_2}$ as $C_{C_4/D_4}(\alpha_q) = 1$. This contradiction shows that C_3/D_3 is abelian. In this case $C_{C_3/D_3}(\alpha_r) = 1$. Set $X/C_{C_4}(\overline{C_2}) = C_{C_4/C_{C_4}(\overline{C_2})}(\alpha_r)$ Obviously X is an $\langle \alpha \rangle$ -invariant subgroup of C_4 such that

$$C_{C_4}(\alpha_r) \leqslant X \nleq C_{C_4}(\overline{C_2})$$
 and $[X, \alpha_r] \leqslant C_{C_4}(\overline{C_2})$.

We also observe that $C_{C_2}(\alpha_r)$ is normalized by X. Since $\alpha_p \alpha_q$ acts fixed-point freely on $C_1 C_{C_2}(\alpha_r) X$, its Fitting height is at most 2 by the Corollary. Therefore X centralizes $C_{C_2}(\alpha_r)$.

If $C_1C_2C_3X < G$, then $f(C_1C_2C_3X) \le 3$ by induction and so $[C_3, X] \le D_3$, that is, $X \le D_4$. Then X stabilizes every homogeneous C_3/D_3 component of $\overline{C_2}$. We also observe that $[W, C_3/D_3] = W$ for any such component W as $[\overline{C_2}, C_3/D_3] = \overline{C_2}$. It follows that there is no α_r -invariant homogeneous C_3/D_3 -component of $\overline{C_2}$ because $[C_3/D_3, \alpha_r] = C_3/D_3$ must act trivially on any such component. Now put

$$Y = W \oplus W^{\alpha_r} \oplus \cdots \oplus W^{\alpha_r^{r-1}}$$

where W is a homogeneous C_3/D_3 -component of $\overline{C_2}$. Since $[C_{C_2}(\alpha_r), X] = 1$, the group X acts trivially on

$$C_Y(\alpha_r) = \{ w + w^{\alpha_r} + \dots + w^{\alpha_r^{r-1}} \mid w \in W \}$$

and hence on W, as $[X, \alpha_r] \leq C_{C_4}(\overline{C_2})$. Thus X acts trivially on $\overline{C_2}$, which is not the case. It follows that $C_1C_2C_3X = G$, that is, $X = C_4$. Now C_4 centralizes $C_{C_2}(\alpha_r)$.

Next observe that $[C_3/D_3, \alpha_q] \neq 1$ since $[C_4, \alpha_q] = C_4$ and let V be an irreducible $(C_3/D_3)C_4(\langle \alpha_q \rangle \times \langle \alpha_r \rangle)$ -submodule of $\overline{C_2}$ on which $[C_3/D_3, \alpha_q]$ acts non-trivially. Now $[V, C_3/D_3] = V$ and we have $V|_{C_3/D_3} = W_1 \oplus \cdots \oplus W_s$ where the modules W_i are homogeneous C_3/D_3 -components of V. We see that no W_i is α_r -invariant, since $[W_i, C_3/D_3] = W_i$ for each i and $[C_3/D_3, \alpha_r] = C_3/D_3$. Put

$$Y_i = W_i \oplus W_i^{\alpha_r} \oplus \cdots \oplus W_i^{\alpha_r^{r-1}}$$

for each i. Thus $V = Y_1 \oplus \cdots \oplus Y_t$. Since

$$C_{Y_i}(\alpha_r) = \{ w + w^{\alpha_r} + \dots + w^{\alpha_r^{r-1}} \mid w \in W_i \}$$

is centralized by C_4 , we have $C_{Y_i}(\alpha_r) \leq Y_i \cap Y_i^x$ for all $x \in C_4$. This gives that $Y_i = Y_i^x$ for all $x \in C_4$. Let $\Omega = \{Y_1, \ldots, Y_t\}$. We observed that $C_4 \langle \alpha_r \rangle$ fixes every element of Ω . Hence

$$t = |\Omega| = |\langle \alpha_q \rangle : N_{\langle \alpha_q \rangle}(Y_1)|$$

and so t is either 1 or q.

If t = 1, then $V = Y_1$ and so s = r; thus α_q stabilizes each W_i . It follows that $[C_3/D_3, \alpha_q]$ acts trivially on each W_i and hence on V, which is not the case. Thus t = q, so that no W_i is α_q -invariant. Then

$$C_{\mathcal{V}}(\alpha_q \alpha_r) = \{ u + u^{\alpha_q} + \dots + u^{\alpha_q^{q-1}} \mid u \in C_{Y_1}(\alpha_r) \} \neq 1,$$

a contradiction which completes the proof.

References

- [1] S. D. Bell and B. Hartley. A note on fixed-point-free actions of finite groups. Quart. J. Math. Oxford Ser. (2) 41 (1990), 127-130.
- [2] T. R. Berger. Nilpotent fixed point free automorphism groups of solvable groups. Math. Z. 131 (1973), 305-312.
- [3] A. Espuelas. The Fitting length of the Hughes subgroup. J. Algebra 105 (1987), 365-371.
- [4] A. Espuelas. A noncoprime Shult type theorem. Math. Z. 196 (1987), 323-329.
- [5] S. Gagola Jr. Solvable groups admitting an "almost fixed point free" automorphism of prime order. *Illinois J. Math.* 22 (1978), 191-207.
- [6] B. Hartley and V. Turau. Finite soluble groups admitting an automorphism of prime power order with few fixed points. *Math. Proc. Cambridge Philos. Soc.* 102 (1987), 431-441.
- [7] B. Huppert and N. Blackburn. Finite groups, vol. 2 (Springer-Verlag, 1981).
- [8] I. M. Isaacs. Fixed points and characters in groups with non-coprime operator groups. Canad. J. Math. 20 (1968), 1315-1320.
- [9] C. Kei-Nah. Finite groups admitting automorphisms of order pq. (Groups-St Andrews 1985.) Proc. Edinburgh Math. Soc. (2) 30 (1987), 51-56.
- [10] K. Doerk and T. O. Hawkes. Finite soluble groups (de Gruyter, 1992).
- [11] T. Meixner. The Fitting length of solvable H_{p^n} -groups. Israel J. Math. 51 (1985), 68-78.
- [12] A. Turull. Supersolvable automorphism groups of solvable groups. Math. Z. 183 (1983), 47-73.
- [13] A. Turull. Fitting height of groups and of fixed points. J. Algebra 86 (1984), 555-566.
- [14] A. Turull Fixed point free action with regular orbits. J. Reine Angew. Math. 371 (1986), 67-91.

Received 18 June, 2003; revised 22 October, 2003

G. Ercan, Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey

E-mail: ercan@metu.edu.tr

İ. Ş. Güloğlu, Tubitak-UEKAE Pk. 74, 41470 Gebze-Kocaeli, Turkey