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Abstract. A finite group FH is said to be Frobenius-like if it has a nontrivial
nilpotent normal subgroup F with a nontrivial complement H such that [F, h] = F
for all nonidentity elements h ∈ H. Let FH be a Frobenius-like group with
complement H of prime order such that CF (H) is of prime order. Suppose that
FH acts on a finite group G by automorphisms where (|G|, |H|) = 1 in such a way
that CG(F ) = 1. In the present paper we prove that the Fitting series of CG(H)
coincides with the intersections of CG(H) with the Fitting series of G, and the
nilpotent length of G exceeds the nilpotent length of CG(H) by at most one. As a
corollary, we also prove that for any set of primes π, the upper π-series of CG(H)
coincides with the intersections of CG(H) with the upper π-series of G, and the
π- length of G exceeds the π-length of CG(H) by at most one.

1. introduction

All groups mentioned are assumed to be finite. Let G be a group. A subgroup
A of AutG is said to be fixed point free if the only element of G fixed by every
element of A is the identity, that is, CG(A) = {g ∈ G | ga = g for all a ∈ A} = 1.
By a celebrated theorem due to Thompson, the group G is nilpotent in case where
A is of prime order. This result is known as the starting point of the research on
the structure of groups admitting a fixed point free group of automorphisms. A
long-standing conjecture which has been extensively studied over the years states
that the nilpotent length of a group G admitting a fixed point free automorphism
group A such that (|G|, |A|) = 1 is bounded above by the length of the longest chain
of subgroups of A. Turull settled the conjecture for almost all A. [16] contains a
detailed survey of the problem and a complete list of related papers then actual.
When A acts fixed point freely and noncoprimely, a result of Bell and Hartley
[2] shows that this conjecture is not true if A is a nonnilpotent group. Therefore
one is naturally led to impose the restriction that A is nilpotent. However, the
noncoprime problem has turned out to be a very difficult question due to the lack
of nice techniques which are valid in the coprime case.

Within the past few years some authors (see [11], [12], [13], [14], [15]) studied a
similar problem which is not directly related to the above conjecture, but involves
the fixed point free action of a nilpotent group. More precisely they investigated
the structure of groups admitting Frobenius groups of automorphisms with fixed
point free kernel. Generalizing these in a sequence of papers ([5], [6], [7], [8], [9]) we
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studied the action of Frobenius-like groups with fixed point free kernel under some
additional assumptions. (Recall that a finite group FH is said to be Frobenius-like
if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H
such that [F, h] = F for all nonidentity elements h ∈ H.)

In the present paper we will be calling attention not to all conclusions which can
be derived but only to the one that the Fitting series of CG(H) coincides with the
intersections of CG(H) with the Fitting series of G. In [15] (see also [12]) Khukhro
obtained this conclusion under the hypothesis that FH is a Frobenius group with
fixed point free kernel F . Later in [5] we extended his result to the case where
the group FH is a Frobenius-like group with fixed point free kernel F under the
additional hypothesis that [F, F ] is of prime order and is centralized by H. In [3]
Collins and Flavell has resolved the special case for which F is an extra-special group
with automorphism group H of prime order fixing [F, F ] elementwise. Recently a
theorem of similar nature with the same conclusion is proved by de Melo in [10] by
assuming that the group FH has normal abelian subgroup F which has a unique
subgroup of order p so that every element in FH outside F is of order p for a prime
p.

Our goal in this article is to study the case where FH is a Frobenius-like group
with complement H of prime order which is coprime to the order of G under the
hypotheses that CF (H) is of prime order. We mainly prove the following:

Theorem Let FH be a Frobenius-like group with kernel F and complement H of
order p for a prime p where CF (H) is of prime order. Suppose that FH acts on a
p′-group G via automorphisms in such a way that CG(F ) = 1. Then
(i) the Fitting series of CG(H) coincides with the intersections of CG(H) with the
Fitting series of G;
(ii) the nilpotent length of G exceeds the nilpotent length of CG(H) by at most one;

and the equality holds if the group FH is of odd order.

We would like to call attention to the Example in [6] which shows that we are
required to assume that CF (H) is of prime order. It should be noted that the present
paper extends [3] to a more general context such as Frobenius-like groups without
the restriction that CF (H) = [F, F ]. It also generalizes our first result [5] in this
context as well by replacing the condition that [F, F ] is of prime order by CF (H) is
of prime order at least in case H is of prime order.

It is also obtained as a corollary of the theorem above that for any set of primes
π, the π-length of G may exceed the π-length of CG(H) by at most one, and the
upper π-series of CG(H) coincides with the intersections of CG(H) with the upper
π-series of G. More precisely we prove

Corollary Let FH be a Frobenius-like group with kernel F and complement H of
order p for a prime p where CF (H) is of prime order. Suppose that FH acts on a
p′-group G via automorphisms in such a way that CG(F ) = 1. Then we have
(i) Oπ(CG(H)) = Oπ(G) ∩ CG(H) for any set of primes π;
(ii) the π-length of G may exceed the π-length of CG(H) by at most one, and the
equality holds if FH is of odd order;
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(iii) Oπ1,π2,...,πk(CG(H)) = Oπ1,π2,...,πk(G) ∩ CG(H) where πi is a set of primes for
each i = 1, . . . , k.

The notation and terminology are standard with few exceptions.

2. the key proposition and its proof

This section is devoted to the proof of the following proposition from which our
theorem is deduced.

Proposition 2.1. Let FH be a Frobenius-like group with kernel F and complement
H = 〈h〉 of order p for a prime p. Suppose that CF (H) is of prime order. Let FH
act on a q-group Q for some prime q 6= p. If V is a kQFH-module for a field k
of characteristic not dividing q such that F acts fixed point freely on the semidirect
product V Q then we have Ker(CQ(H) onCV (H)) = Ker(CQ(H) on V ).

Proof. Here we use alternative notation for the kernel of an action of a group A
by automorphisms on a group B denoting Ker(AonB) := CA(B) in order to
avoid cumbersome subscripts. We shall proceed over several steps. Set K =
Ker(CQ(H) onCV (H)).

(1) We may assume that chark 6= p.

Proof. Suppose that chark = p. Then q 6= p. Set A = K and B = H. Applying
Thompson A×B-lemma to the action of A×B on V , we get the result. Therefore
we may assume that chark 6= p. �

(2) We may assume that k is a splitting field for all subgroups of QFH.

Proof. We consider the QFH-module V̄ = V ⊗k k̄ where k̄ is the algebraic closure
of k. Notice that dimkV = dimk̄V̄ and CV̄ (H) = CV (H) ⊗k k̄. Therefore once the
proposition has been proven for the group QFH on V̄ , it becomes true for QFH on
V also. �

Suppose that the proposition is false and choose a counterexample with minimum
dimk V + |QFH|. To ease the notation we set K = Ker(CQ(H) onCV (H)).

(3) Q acts faithfully on V .

Proof. We set Q = Q/Ker(QonV ) and consider the action of the group QFH on V
assuming Ker(QonV ) 6= 1. An induction argument gives Ker(CQ(H) onCV (H)) =

Ker(CQ(H) on V ). This leads to a contradiction as CQ(H) > CQ(H). Thus we may
assume that Q acts faithfully on V . �

(4) V is an irreducible QFH-module.

Proof. As char(k) is coprime to the order of Q and K 6= 1, there is a QFH-
composition factor W of V on which K acts nontrivially. If W 6= V , then the
proposition is true for the group QFH on W by induction. That is,

Ker(CQ(H) onCW (H)) = Ker(CQ(H) onW )

and hence
K = Ker(K onCW (H)) = Ker(K onW )
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as chark 6= q. This contradicts the fact that K acts nontrivially on W. Hence
V = W . �

By Clifford’s theorem the restriction of the QFH-module V to the normal sub-
group Q is a direct sum of Q-homogeneous components. Let Ω denote the set of
Q-homogeneous components of V .

(5) K acts trivially on the sum of components in any regular |H|-orbit in Ω.

Proof. Let W be an element in Ω such that {W y : y ∈ H} is a regular |H|-orbit
in Ω and let X be the sum of components. Then K acts trivially on CX(H) ={∑

y∈H v
y : v ∈ W

}
and hence trivially on X. �

(6) F acts transitively on Ω and H fixes an element of Ω.

Proof. By (5) it is not possible that every H-orbit in Ω is regular. So there exists
W ∈ Ω such that StabH(W ) 6= 1. In this case we have StabH(W ) = H. Let now
Ω1 be the F -orbit on Ω containing W. Then Ω1 is stabilized by FH. As FH acts
transitively on Ω we see that Ω = Ω1 and hence F acts transitively on Ω. �

From now on W will denote an H-invariant element in Ω the existence of which
is established by (6). It should be noted that the group Z(Q/Ker(QonW )) acts
by scalars on the homogeneous Q-module W , and so [Z(Q), F1H] 6 Ker(QonW )
where F1 = StabF (W ) as W is stabilized by H.

Let T be a transversal for F1 in F . Then F =
⋃
t∈T F1t and so V =

⊕
t∈T W

t.
An H-orbit on Ω = {W t : t ∈ T} is of length 1 or p. Let {W t1 , . . . ,W ts} with
t1 = 1 be the set of all H-invariant elements of Ω and set U =

⊕s
i=1W

ti . Now
V = U ⊕ Y where Y is the sum of the components of all regular H-orbits on Ω.
By (5) K acts trivially on Y. Set L = K ∩ Z(CQ(H)). Since 1 6= K E CQ(H), the
group L is nontrivial. Then there exists 1 6= z ∈ L acting nontrivially on at least
one H-invariant element of Ω. Without loss of generality we may assume that z acts
nontrivially on W.

(7) We may assume that T ∩CF (H) = {t1, . . . , ts}. Then s = |CF (H) : CF1(H)|.
Now s = 1 if and only if CF (H) 6 F1. We also observe that Kx 6 CQ(U) for every
x ∈ F − F2 where F2 = StabF (U).

Proof. Notice that W tih = W ti implies [ti, h] ∈ F1 for any i ∈ {1, . . . , s}. That is,
tiF1 is a coset of F1 in F which is fixed by H. Since the orders of F and H are
coprime we may choose ti ∈ CF (H). Conversely we see that for each t ∈ CF (H),
W t is H-invariant. Hence we may assume that T ∩CF (H) = {t1, . . . , ts}. Then s =
|CF (H) : CF1(H)|. Notice also that for every x ∈ F − F2 and for every i = 1, . . . , s,

W tix ∈ Y and hence Kx−1
6 CQ(W ti) for every i = 1, . . . , s by (5). This means that

Kx ∈ CQ(U) for every x ∈ F − F2. �

(8) F1CF (H) = F2.

Proof. By (7), CF (H) acts transitively on the set of fixed points of H on Ω and
hence CF (H) 6 F2. Clearly we also have F1 6 F2. Therefore F2 = F1CF (H). �

(9) Q = 〈zF 〉 is abelian with [Q,F1H] 6 CQ(U). Furthermore we observe that
F2 6= F1.
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Proof. Clearly Q = 〈zF 〉 by induction. By (7) we have Q = 〈zF2〉CQ(U). Set
Q̄ = Q/CQ(U). Suppose first that CF (H) 6= 1. We observe that [L̄,H, Z2(Q̄)] = 1.
Due to the scalar action of also Z(Q̄) on each W ti for each i = 1, . . . , s we also
have [L̄, Z2(Q̄), H] 6 [Z(Q̄), H] = 1. It follows by the three subgroups lemma that
[Z2(Q̄), H, L̄] = 1. Notice that Z2(Q̄) = [Z2(Q̄), H]CZ2(Q̄)(H) as q 6= p. Since

L̄ 6 Z(CQ̄(H)) we get [L̄, Z2(Q̄)] = 1 whence [Q̄, Z2(Q̄)] = 1. That is, Q̄ is abelian.
Now Q′ 6 CQ(U) implies Q′ 6 CQ(V ) = 1. Therefore Q is abelian as claimed.
Hence Q/CQ(W ) acts by scalars on W and so [Q,F1H] 6 CQ(W ). Since |F2 : F1| is
at most a prime, F1 C F2 whence [Q,F1H] 6 CQ(U). Set X = Fq′ . As CQ(F ) = 1
we have

1 =
∏
f∈X

zf = (
∏

f∈X−F1

zf )(
∏

f∈X∩F1

zf ) ≡ (
∏

f∈X−F1

zf )(z|X∩F1|)CQ(U).

In case F1 = F2 we have
∏

f∈X−F1
zf ∈ CQ(U) by (7) and hence z|X∩F1| ∈ CQ(U).

This leads to the contradiction that z ∈ CQ(U). Therefore F1 6= F2 as claimed. �

(10) Final contradiction.

Proof. By (8) and (9) we have CF (H) 66 F1. Then F1 ∩ CF (H) = 1 whence the
group F1H is Frobenius. It follows now by Lemma 1.3 in [15] that CW (H) 6= 0. On
the other hand KCQ(W )/CQ(W ) acts by scalars and nontrivially on W and hence
CW (H) = 0. This contradiction completes the proof. �

3. Proof of Theorem

In this section we present a proof of the theorem. We firstly gather together some
certain facts which will be particularly useful.

Lemma 3.1. Suppose that a Frobenius-like group FH acts on the finite group G by
automorphisms so that CG(F ) = 1. Then the following hold:

(i) There is a unique FH-invariant Sylow p-subgroup of G for each prime p di-
viding the order of G.

(ii) CG/N(F ) = 1 for every FH-invariant subgroup N of G.

Proof. The proof of Lemm 2.2 and Lemma 2.6 in [13] applies also to this statement.
�

Proof of Theorem We already know by [1] that G is solvable due to the nilpotency
of F and the assumption CG(F ) = 1.

Firstly we will prove that the equality F (CG(H)) = F (G) ∩ CG(H) is true under
the hypothesis of the theorem. It is straightforward to verify that F (G)∩CG(H) 6
F (CG(H)). To prove the reversed inclusion F (CG(H)) 6 F (G) we shall proceed by
induction on the order of G. Consider now the nontrivial group G = G/F (G). By
Lemma 3.1 (ii) above CG(F ) is trivial. Then, an induction argument yields that

F (CG(H)) 6 F (G) = F2(G) whence F (CG(H)) 6 F2(G). Notice that CG(H) =
CG(H) since G is a p′-group. If F2(G) 6= G, another induction argument ap-
plied to the action of FH on F2(G) implies that F (CG(H)) = F (CF2(G)(H)) 6
F (F2(G)) = F (G). Thus we may assume that F2(G) = G. It is clear that there
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exist distinct primes r and q such that [Oq(CG(H)), Or(G)] is nontrivial. The group
Or,q(G/Or′(G)) is a counterexample, whence F (G) = Or(G) and G is a q-group.
By Lemma 3.1 (i) there is a unique FH-invariant Sylow q-subgroup Q of G. Then
G = Q, that is G = F (G)Q. Note that CQ(H) is nontrivial.

On the other hand, applying the above Proposition to the action of the group
QFH on V = F (G)/Φ(G) we get

Ker(CQ(H) onCV (H)) = Ker(CQ(H) on V ) = 1

establishing the desired equality.
To prove (i) is equivalent to showing that Fk(CG(H)) = Fk(G) ∩ CG(H) for each

natural number k. This is true for k = 1 by the preceding paragraph. Assume that
Fk(CG(H)) = Fk(G) ∩ CG(H) holds for a fixed but arbitrary k > 1. Due to the
coprime action of H on G we have CG/Fk(G)(H) = CG(H)Fk(G)/Fk(G) and hence
Fk+1(CG(H))Fk(G)/Fk(G) 6 F (CG/Fk(G)(H)) 6 F (G/Fk(G)),
This forces Fk+1(CG(H)) 6 Fk+1(G) ∩ CG(H), as desired.
Let now n denote the nilpotent length of CG(H). Then CG(H) = Fn(CG(H)) 6

Fn(G) whence H acts fixed point freely on G/Fn(G) by the coprime action of H on
G. It follows that the nilpotent length of G exceeds the nilpotent length of CG(H)
by at most one as claimed. Notice that if FH is of odd order then CG/Fn(G)(H)
is nontrivial by in Theorem A in [4], that is, CG(H) is not contained in Fn(G).
Therefore the nilpotent length of G is equal to the nilpotent length of CG(H) when
FH is of odd order. �

Proof of Corollary It can be proven using the same argument as in the proof of
Corollary 4.1 of [15] and in the proof of the theorem above. � �
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