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Abstract. A finite group FH is said to be Frobenius-like if it has a nontrivial
nilpotent normal subgroup F with a nontrivial complement H such that FH/[F, F ]
is a Frobenius group with Frobenius kernel F/[F, F ]. Such subgroups and sections
are abundant in any non-nilpotent finite group. We discuss several recent results
about the properties of a finite group G admitting a Frobenius-like group of au-
tomorphisms FH aiming at restrictions on G in terms of CG(H) and focusing
mainly on bounds for the Fitting height and related parameters. Earlier such
results were obtained for Frobenius groups of automorphisms; new theorems for
Frobenius-like groups are based on new representation-theoretic results. Apart
from a brief survey, the paper contains the new theorem on almost nilpotency
of a finite group admitting a Frobenius-like group of automorphisms with almost
fixed-point-free extraspecial kernel.

1. Introduction

Every non-nilpotent finite group contains nilpotent subgroups that are normalized
but not centralized by elements of coprime order. Therefore there are sections of the
form 1 6= [N, g]〈g〉, where N is a nilpotent p′-subgroup and g has prime order p. Such
a section is a special case of a so-called Frobenius-like group, the formal definition of
which is given below. This observation brings us to say that “there is an abundance
of Frobenius-like groups around”.

Definition 1.1. A finite group G is said to be Frobenius-like if it contains a
nontrivial nilpotent normal subgroup F , which is called the kernel of G; and a
nontrivial complement H to F in G, which is called the complement in G such
that

[F, h] = F for all nonidentity elements h ∈ H.

Remark 1.2. Every Frobenius group is a Frobenius-like group. Conversely, if FH
is a Frobenius-like group with kernel F and complement H, then FH/[F, F ] is a
Frobenius group with kernel F/[F, F ] and complement [F, F ]H/[F, F ] isomorphic to
H. Since π(F ) = π(F/[F, F ]) we see that (|F |, |H|) = 1 and H has the structure of
a Frobenius complement. In particular (see [9, Chapter 6]),

(1) |H| divides (|F/[F, F ]| − 1),
(2) all abelian subgroups of H are cyclic, and Sylow subgroups of H are either

cyclic or generalized quaternion,
(3) if all Sylow subgroups of H are cyclic, then [H,H] and H/[H,H] are both

cyclic and have coprime orders, [H,H] 6 F (H), F (H) is cyclic and π(F (H)) =
π(H).
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The purpose of this paper is to discuss some recent results concerning the structure
of a finite solvable group G on which a certain Frobenius-like group FH, with kernel
F and complement H, acts by automorphisms. Earlier similar results, prompted by
Mazurov’s problem 17.72 in the Kourovka Notebook [18], were obtained in the case
of FH being a Frobenius group. In this case, Khukhro, Makarenko and Shumyatsky
in [10,11,12,13,14,15,16,17] obtained restrictions on various parameters of G such as
Fitting height, nilpotency class, exponent, etc., in terms of the fixed-point subgroup
CG(H) of H. It is a natural and important problem to extend these results to more
general situations, both from the viewpoint of relaxing the strong conditions on the
action of the kernel and relaxing the conditions on the structure of the group FH
itself. Focusing on the Fitting height and related parameters, Ercan and Güloğlu
introduced the concept of a Frobenius-like group and obtained the results presented
in [2,3], and together with Khukhro the results in [4].

The paper is structured as follows. The results for FH being a Frobenius group
are described in Section 2. Section 3 contains a brief discussion of Frobenius-like
groups and the recent results on the structure of groups acted on by them. In
Section 4 we obtain a new theorem on almost nilpotency of a finite group admitting
a Frobenius-like group of automorphisms with almost fixed-point-free extraspecial
kernel, which generalizes Theorem 2.1 in [13] and Proposition C in [3].

2. Frobenius Groups

We devote this section to the relevant work of Khukhro, Makarenko and Shumy-
atsky and assume throughout that the following hypothesis is satisfied.

Hypothesis I. FH is a Frobenius group with kernel F and complement H and FH
acts on the finite group G by automorphisms.

The investigation of the properties and parameters of the group G under Hy-
pothesis I was motivated by Mazurov’s problem 17.72 stated in 2010 in “Kourovka
Notebook” [18]. He supposes additionally that GF is a Frobenius group with kernel
G and complement F (then the group GFH is called a 2-Frobenius group) and asks
whether (a) the nilpotency class of G is bounded in terms of the order of H and the
nilpotency class of CG(H), and also whether (b) the exponent of G is bounded in
terms of |H| and the exponent of CG(H).

The question (a) on the nilpotency class was answered affirmatively by Makarenko
and Shumyatsky in [16] using also some ideas of Khukhro. Subsequently it was
observed that in order to get very precise structural results about G it suffices to
assume that F acts fixed-point-freely on G and not necessarily semiregularly. So
the condition that CG(x) = 1 for all nonidentity elements x ∈ F was replaced by
CG(F ) = 1. By a theorem of Belyaev and Hartley [7] based on the classification
then G is solvable. Khukhro, Makarenko and Shumyatsky investigated extensively
this case and proved the following theorems over a sequence of papers, namely, [10],
[11], and [15]. Here Fi(G) denote terms of the Fitting series.

Theorem 2.1. Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied.
Then G is solvable and

(1) Fn(G) ∩ CG(H) = Fn(CG(H)) for any positive integer n,
(2) the Fitting height of G is equal to the Fitting height of CG(H),
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(3) the π-length of G is equal to the π-length of CG(H),
(4) |G| is bounded in terms of |H| and |CG(H)|,
(5) the rank of G is bounded in terms of |H| and the rank of CG(H).

The main ingredient of the proof of Theorem 2.1 is Clifford’s theorem, by which
any kFH-module V on which F acts fixed-point-freely is a free kH-module (often
also called a regular kH-module).

Theorem 2.2. Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied.
If in addition FH is metacyclic and CG(H) is nilpotent, then G is nilpotent and the
nilpotency class of G is bounded in terms of |H| and the nilpotency class of CG(H).

Part (b) of Mazurov’s question so far has only been answered partially.

Theorem 2.3. Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied.
If in addition FH is metacyclic, then the exponent of G is bounded in terms of |F |
and the exponent of CG(H).

Theorems 2.2 and 2.3 are proved by reducing each of them to a problem about
Lie rings followed by a delicate analysis of the corresponding parameters in the
environment of Lie rings.

Although Theorem 2.1 might lead the reader to the expectation that ‘all’ the
parameters of G and CG(H) must be the same, this is not true for the nilpotency
class and exponent, as shown by an example in [1]. It must be mentioned, however,
that there are only few examples of this kind, which cannot support the conjecture
that both the nilpotency class and the exponent of G can be arbitrarily larger than
those of CG(H) — of course, with larger complements H. It is also worth mentioning
that the additional condition of FH being metacyclic is essential in Theorem 2.2,
as shown by examples. It is conjectured that this condition can be dropped in
Theorem 2.3, but so far a corresponding result was only proved for |FH| = 12 by
Shumyatsky [17]. It is also conjectured that in Theorem 2.3 the dependence on |F |
can be replaced by dependence on |H|.

It is now natural to ask what can be said without the assumption that CG(F ) = 1.
In this direction Khukhro obtained upper bounds for some parameters of the group
G in terms of |H| and those of CG(H) in [12]. Namely, he proved the following
theorem, in which r(G) denotes the rank of a group G, that is, the least number r
such that every subgroup of G can be generated by r elements.

Theorem 2.4. Assuming Hypothesis I and that (|G|, |FH|) = 1 we have

(1) |G| 6 |CG(F )| · f(|H|, |CG(H)|) and
(2) r(G) 6 r(CG(F )) + g(|H|, r(CG(H))),

for some functions f and g.

In view of these positive results one can also ask whether it could be possible to
prove parts (1) and (2) of Theorem 2.1 under the weaker assumption that [G,F ] = G.
However, the answer is negative as the following example due to Khukhro shows.

Example 2.5. Let FH be the Frobenius group of order 6, K = LM be the Frobe-
nius group of order 55, and T be the elementary abelian group of order 72. We can
define actions of FH on K and T by automorphisms so that the following hold:
F acts trivially on K and fixed-point-freely on T ; and H acts trivially on M and
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fixed-point-freely on L; and on T by transposing a basis of T so that |CT (H)| = 7.
We now define an action of FH on the wreath product of K and T , by defining
the action of TFH as in “non-commutative induced representation”. The base
subgroup of the wreath product is B = Kt1 × Kt2 × · · · × Kt49 , where 1 = t1
and {ti | i = 1, 2, . . . , 49} = T . We define the action as (kt)a = (ka)t

a
for any

k ∈ K, t ∈ T, a ∈ FH.
Let U = BT . Clearly FH acts on U . We let G = [U, F ]. The subgroup CU(H)

contains the Sylow 5-subgroup M t of Kt for every t ∈ CT (H). These M t, t ∈ CT (H)
are in F (CU(H)), since for t ∈ CT (H), the group H normalizes Lt without fixed-
points and M t centralizes Ks for any t 6= s ∈ T . Clearly T = [T, F ], T < G and
GCU . So G contains [Kt, s] for any t, s ∈ T . Taking s, t ∈ CT (H) and 1 6= m ∈M
we obtain in G the element [mt, s] = (m−1)tmts of order 5 in M t ×M ts which lies
in F (CG(H)). But, for 1 6= x ∈ L, the element (m−1)tmts acts nontrivially on
〈x−txts〉 6 [Lt, s] 6 G, and hence (m−1)tmts is not in F (G). Thus, F (CG(H)) 66
F (G)

Therefore the following result of [6] seems to be interesting.

Theorem 2.6. Assume Hypothesis I. If (|G|, |FH|) = 1, [G,F ] = G, and CG(F )H
is a Frobenius group with kernel CG(F ) and complement H, then the Fitting height
of G is equal to the Fitting height of CG(H).

Here the condition that CG(F )H is a Frobenius group with kernel CG(F ) and
complement H, implies, of course, that not necessarily F but FH acts fixed-point-
freely on G. One can ask further whether the same conclusion is true under the
assumption that FH acts fixed-point-freely on G, and whether the coprimeness
condition (|G|, |FH|) = 1 could be dropped.

Other recent results on the structure of groups admitting the action of a Frobenius
group with not necessarily fixed-point-free kernel are the following theorems due to
Khukhro and Makarenko [13,14].

Theorem 2.7. Assume Hypothesis I, assume that CG(H) is nilpotent of class c and
(|G|, |FH|) = 1.

(a) Then G has a nilpotent characteristic subgroup of index bounded in terms of
|CG(F )| and |F |.

(b) If in addition F is cyclic, then this subgroup can be chosen to be of index
bounded in terms of c, |CG(F )|, and |F | and to have nilpotency class bounded in
terms of c and |H| only.

As already mentioned above, the additional condition of F being cyclic cannot be
dropped in part (b), even in the case of a fixed-point-free kernel.

Theorem 2.8. Suppose that a finite p-group P admits a Frobenius group FH of
automorphisms with cyclic kernel F of order pk. Let c be the nilpotency class of the
fixed-point subgroup CP (H) of the complement. Then

(a) P has a characteristic subgroup P1 of index bounded in terms of c, |F |, and
|CP (F )| whose nilpotency class is bounded in terms of c and |H| only.

(b) P has a characteristic subgroup P2 of index bounded in terms of |F | and
|CP (F )| such that
(i) |P2| 6 |CP (H)||H|;
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(ii) r(P2) 6 |H| · r(CP (H));
(iii) the exponent of P2 is at most p2e, where pe is the exponent of CP (H).

3. Frobenius-like groups

It is a natural and important problem to extend the results on Frobenius groups of
automorphisms to more general situations, both from the viewpoint of (a) relaxing
the strong conditions on the action of the kernel and (b) relaxing the conditions on
the structure of the group FH itself. As for (a), we saw theorems in Section 2 for a
Frobenius group of automorphisms FH under various weaker assumptions. In this
section we consider part (b) of this program.

As explained in the Introduction, the concept of a Frobenius-like group was de-
fined during some efforts to understand the real relation between the hypotheses on
the acting group FH and its conclusions presented in Section 2. Weakening the con-
dition that FH is a Frobenius group to assuming only that FH is a Frobenius-like
group seems to be a very significant generalization, because Frobenius-like groups
are much more probable to be encountered in practice. Even if one cannot make use
of the full generality of being Frobenius-like, but understands only the case where F
is a special group or even an extraspecial group, one gains an important amount of
information and methods in analysing the structure of finite solvable groups with a
prescribed subgroup of the group of automorphisms. Indeed, reduction arguments
applied while studying the structure of minimal counterexamples often lead us to ex-
traspecial groups F on which a group H acts in such a way that H centralizes Z(F )
and acts semiregularly on the Frattini quotient group of F , so that FH becomes a
Frobenius-like group.

It is worth mentioning that the first difficulty arising in this context when FH
is not a Frobenius group is the fact that a kFH-module V on which F acts fixed-
point-freely no longer must be a free kH-module. But the work of Ercan and
Güloğlu in [2, Theorem A] shows that it is not very far from being free, at least
for certain Frobenius-like groups, in the sense that it contains a regular kH-module
which guarantees that CV (H) is nontrivial. Namely, Theorem A in [2] is proved by
reducing the structure of a minimal counterexample to a very restricted configuration
and deducing a contradiction by proving the following theorem [2, Proposition C]
on representations of some specific groups having a normal extraspecial subgroup,
which is also of independent interest.

Theorem 3.1. Let H be a group in which each Sylow subgroup is cyclic. Assume
that H /F (H ) is not a nontrivial 2-group. Let P be an extraspecial group of order
p2m+1 for some prime p not dividing |H|. Suppose that H acts on P in such a way
that H centralizes Z(P ), and [P, h] = P for any nonidentity element h ∈ H. Let k be
an algebraically closed field of characteristic not dividing the order of G = PH and
let V be a kG-module on which Z(P ) acts nontrivially and P acts irreducibly. Let χ
be the character of G afforded by V . Then |H| divides pm− δ and χ

H
= pm−δ

|H| ρ+ δµ,

where ρ is the regular character of H, µ is a linear character of H and δ ∈ {−1, 1}.

This theorem can be regarded as a generalization of the classical result in [8, Satz
V.17.13], and is proved along the same lines as in its proof due to Dade. As an
immediate consequence of Theorem 3.1 we have the following.
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Corollary 3.2. Under the hypotheses and notation of Theorem 3.1, the module VH
contains a regular kH-submodule as a direct summand if and only if |H| 6= pm + 1.
In particular, if FH is of odd order, then VH contains a regular kH-submodule.

We now consider the following complicated-looking hypothesis which is introduced
in [4]. It is formulated to avoid the so-called exceptional cases, which possibly occur
in Hall–Higman type arguments, and is slightly more general than assuming that
FH is of odd order as in the hypothesis of Theorem A in [2].

Hypothesis II. FH is a Frobenius-like group with kernel F and complement H
such that a Sylow 2-subgroup of H is cyclic and normal, and F has no extraspecial
sections of order p2m+1 such that pm + 1 = |H1| for some subgroup H1 6 H.

One can prove the following theorem by repeating word-for-word the proof of [2,
Theorem A] (where |FH| was odd).

Theorem 3.3. Let V be a nonzero vector space over an algebraically closed field k
and let FH be a Frobenius-like group satisfying Hypothesis II and acting on V as
a group of linear transformations such that char(k) does not divide the order of H.
Then VH has an H-regular direct summand if one of the following holds:

(1) CV (F ) = 0,
(2) [V, F ] 6= 0 and char(k) does not divide the order of F .

The upshot for the action of a Frobenius-like group satisfying Hypothesis II on a
finite solvable group G is the following.

Corollary 3.4. Let G be a finite solvable group acted on coprimely by a Frobenius-
like group FH satisfying Hypothesis II so that [G,F ] 6= 1. Then CG(H) 6= 1.

This corollary is used in the proof of the following main result of [3].

Theorem 3.5. Let G be a finite group admitting a Frobenius-like group of au-
tomorphisms FH satisfying Hypothesis II such that [F, F ] is of prime order and
[[F, F ], H] = 1. Assume further that (|G|, |H|) = 1 and CG(F ) = 1. Then

(1) the Fitting series of CG(H) coincides with the intersections of CG(H) with
the Fitting series of G;

(2) the Fitting height of G is equal to the Fitting height of CG(H).

And exactly as in [11] one can deduce the corresponding theorem about π-series.
Here Oπ(G) is the largest normal π-subgroup of a group G, for some set of primes π.

Theorem 3.6. Let G be a finite group admitting a Frobenius-like group of au-
tomorphisms FH satisfying Hypothesis II such that [F, F ] is of prime order and
[[F, F ], H] = 1. Assume further that (|G|, |H|) = 1 and CG(F ) = 1. Then we have

(1) Oπ(CG(H)) = Oπ(G) ∩ CG(H) for any set of primes π,
(2) the π-length of G is equal to the π-length of CG(H),
(3) Oπ1,π2,...,πk(CG(H)) = Oπ1,π2,...,πk(G)∩CG(H) where πi is a set of primes for

each i = 1, . . . , k.

As the example in [3] shows, the fixed-point-freeness of F on G in the hypothesis of
Theorem 3.5 seems to be essential to conclude that F (G)∩CG(H) = F (CG(H)), and
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one cannot even replace the condition CG(F ) = 1 by the condition that CCG(F )(h) =
1 for all nonidentity elements h ∈ H, in contrast to Theorem 2.5.

One can obtain similar bounds for some parameters of the group G as in the case
where FH is a Frobenius group. Namely we have the following result obtained in [4].

Theorem 3.7. Let FH be a Frobenius-like group with kernel F and complement
H satisfying Hypothesis II. Let P be a finite p-group admitting FH as a group of
automorphisms of coprime order so that [P, F ] = P . Then

(1) the nilpotency class of P is at most 2 log
p
|CP (H)|,

(2) |P | is bounded in terms of |H| and |CP (H)|,
(3) the rank of P is bounded in terms of |H| and the rank of CP (H).

Recall that the rank of a group K denoted by r(K) is the smallest integer s
such that every subgroup of K can be generated by s elements. With this notation
the above theorem leads to an analogue of Theorem 2.6 for Frobenius-like groups;
namely we have the following result obtained in [4].

Theorem 3.8. Let FH be a Frobenius-like group with kernel F and complement H
satisfying Hypothesis II. If a finite group G admits FH as a group of automorphisms
of coprime order, then

(1) |G| 6 |CG(F )| · f(|H|, |CG(H)|) and
(2) r(G) 6 r(CG(F )) + g(|H|, r(CG(H)))

for some functions f and g.

We present below a result of different nature which is the most recent theorem in
this context and appears as the main theorem in [5].

Theorem 3.9. Let FH be a Frobenius-like group satisfying Hypothesis II acting
faithfully by linear transformations on a vector space V over a field k of characteristic
that does not divide |FH|. Then F is solvable of derived length at most log2m+ 2,
where m = dimk CV (H).

Here the function log2m + 2 is well defined due to the fact that m 6= 0 by
Corollary 3.4. Notice also that the bound for the derived length is independent
of H. Finally, it should be noted that additional conditions like Hypothesis II
cannot be dropped as shown in Remark 2.4 in [5].

4. Frobenius-like group of automorphisms
with fixed-point-free almost extraspecial kernel

In this section we prove a new theorem on almost nilpotency of a finite group
admitting a Frobenius-like group of automorphisms with almost fixed-point-free ex-
traspecial kernel, which generalizes Theorem 2.7(a). The proof relies on the following
generalization of a basic proposition which is essentially used in proving parts (1),
(2) of Theorem 2.1 and Theorems 2.6, 2.7, 3.5, 3.6 stated in the previous sections.

Proposition 4.1. Let FH be a Frobenius-like group satisfying Hypothesis II such
that [F, F ] is of prime order and [[F, F ], H] = 1. Suppose that FH acts on a q-group
Q of class at most 2 for some odd prime q coprime to the order of FH. Let V be a
kQFH-module where k is a field of characteristic not dividing |QFH|. Suppose fur-
ther that CV (F ) = 1. Then we have Ker(C[Q,F ](H) onCV (H)) = Ker(C[Q,F ](H) on V ).
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Here we use alternative notation for the kernel of an action of a group A by
automorphisms on a group B denoting Ker(AonB) := CA(B) in order to avoid
cumbersome subscripts.

Proof. Suppose the proposition is false and choose a counterexample with minimum
dimk V + |QFH|. To ease the notation we set K = Ker(C[Q,F ](H) onCV (H)). We
proceed over several steps. �

(1) We may assume that k is a splitting field for all subgroups of QFH.

Proof. We consider the QFH-module V̄ = V ⊗k k̄ where k̄ is the algebraic closure
of k. Notice that dimkV = dimk̄V̄ and CV̄ (H) = CV (H) ⊗k k̄. Therefore once the
proposition has been proven for the group QFH on V̄ , it becomes true for QFH on
V also. �

(2) We have Q = [Q,F ] and hence CQ(F ) 6 Q′ 6 Z(Q).

Proof. We may assume that [Q,F ] acts nontrivially on V. If [Q,F ] 6= Q, then the
proposition holds by induction for the group [Q,F ]FH on V . Since [Q,F, F ] =
[Q,F ] due to the coprime action of F on Q, the conclusion of the proposition is
true. This contradiction shows that [Q,F ] = Q and hence CQ(F ) 6 Q′ 6 Z(Q). �

(3) V is an irreducible QFH-module on which Q acts faithfully.

Proof. As char(k) is coprime to the order of Q and K 6= 1, there is a QFH-
composition factor W of V on which K acts nontrivially. If W 6= V , then the
proposition is true for the group QFH on W by induction. That is,

Ker(CQ(H) onCW (H)) = Ker(CQ(H) onW )

and hence

K = Ker(K onCW (H)) = Ker(K onW )

which is a contradiction with the assumption that K acts nontrivially on W. Hence
V = W .

We next set Q = Q/Ker(Q on V ) and consider the action of the group QFH on
V assuming Ker(Q on V ) 6= 1. An induction argument gives

Ker(CQ(H) onCV (H)) = Ker(CQ(H) on V )

which leads to a contradiction as CQ(H) = CQ(H). Thus we may assume that Q
acts faithfully on V. �

By Clifford’s theorem the restriction of the QFH-module V to the normal sub-
group Q is a direct sum of Q-homogeneous components.

(4) Let Ω denote the set of Q-homogeneous components of V . Then F acts
transitively on Ω and H fixes an element of Ω.

Proof. Let Ω1 be an F -orbit on Ω and set H1 = StabH(Ω1). Suppose first that
H1 = 1. Pick an element W from Ω1. Clearly, we have StabH(W ) 6 H1 = 1
and hence the sum X =

∑
h∈HW

h is direct. It is straightforward to verify that

CX(H) =
{∑

h∈H v
h : v ∈ W

}
. By definition, K acts trivially on CX(H). Note also

that K normalizes each W h as K 6 Q. It follows now that K is trivial on X. Notice
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that the action of H on the set of F -orbits on Ω is transitive, and K 6 CQ(H).
Hence K is trivial on the whole of V contrary to (3). Thus H1 6= 1.

The group H acts transitively on {Ωi : i = 1, 2, . . . , s} , the collection of F -orbits
on Ω. Let now Vi =

⊕
W∈Ωi

W for i = 1, 2, . . . , s. Suppose that H1 is a proper
subgroup of H, equivalently, s > 1. By induction the proposition holds for the group
QFH1 on V1, that is,

Ker(CQ(H1) onCV1(H1)) = Ker(CQ(H1) on V1).

In particular, we have

Ker(CQ(H) onCV1(H1)) = Ker(CQ(H) on V1).

On the other hand we observe that

CV (H) = {ux1 + ux2 + · · ·+ uxs : u ∈ CV1(H1)}

where x1, . . . , xs is a complete set of right coset representatives of H1 in H. By
definition, K acts trivially on CV (H) and normalizes each Vi. Then K is trivial on
CV1(H1) and hence on V1. As K is normalized by H we see that K is trivial on each
Vi and hence on V contrary to (3). Therefore H1 = H and F acts transitively on Ω
so that Ω = Ω1 as desired.

Let now S = StabFH(W ) and F1 = F ∩ S. Then |F : F1| = |Ω| = |FH : S| and
so |S : F1| = |H|. Notice next that as (|F1|, |H|) = 1 there exists a complement, say
S1, of F1 in S with |H| = |S1| by Schur-Zassenhaus theorem. Therefore by passing,
if necessary, to a conjugate of W in Ω, we may assume that S = F1H, that is, W is
H-invariant. This establishes the claim. �

From now on W will denote an H-invariant element in Ω the existence of which is
established by (4). It should be noted that the group Z(Q/CQ(W )) acts by scalars
on the homogeneous Q-module W , and so [Z(Q), H] 6 CQ(W ) as W is stabilized
by H. Set L = K ∩ Z(CQ(H)). Since 1 6= K E CQ(H), the group L is nontrivial.
To simplify the notation we set F0 = [F, F ].

(5) Set U =
∑

x∈F0
W x and F2 = StabF (U). Then [L,Q] 6 CQ(U).

Proof. Note that Z2(Q) = Q by the hypothesis andQ = [Q,H]CQ(H) as (|Q| , |H|) =
1. We have [Q,L,H] 6 [Z(Q), H] 6 CQ(W ). We also have [L,H,Q] = 1 as
[L,H] = 1. It follows now by the three subgroup lemma that [H,Q,L] 6 CQ(W ). On
the other hand [CQ(H), L] = 1 by the definition of L. Thus [L,Q] 6 CQ(W ). Since
the group [L,Q] is F0 -invariant as [F0, H] = 1, we conclude that [L,Q] 6 CQ(U). �

(6) F2 = F1F0 is a proper subgroup of F , and Kx acts trivially on U for every
x ∈ F − F2. Moreover, CV (H) 6= 0.

Proof. For F2 = StabF (U), clearly we have F0 6 F2 and F1 = StabF (W ) 6 F2.

Assume that F = F2. This forces the equality V = U as F is transitive on Ω by
(4). In fact we have F = F1 = F2 and so V = W = U as F0 6 Φ(F ). Then
[LF2 , Q] 6 CQ(V ) = 1 by (5) and hence LF2 6 Z(Q). Now Z(Q/CQ(W )) and
hence L acts by scalars on the homogeneous Q-module V . Notice that CV (H) 6= 0
by Theorem 3.3 applied to the action of FH on V. Since L acts faithfully and by
scalars on V , we get L = 1, which is not the case. Consequently, in any case F 6= F2.
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Pick x ∈ F − F2 and suppose that there exists 1 6= h ∈ H such that (Ux)h = Ux

holds. Then [h, x−1] ∈ F2 and so F2x = F2x
h = (F2x)h implying the existence of

an element g ∈ F2x∩CF (h) by [[8], Kapitel I, 18.6] by coprimeness. The Frobenius
action of H on F/F2 gives that x ∈ F2, a contradiction. That is, for each x ∈ F−F2,
StabH(Ux) = 1. In particular, H−orbit of Ux is regular and hence we conclude that
CV (H) 6= 0.

Set now U1 = Ux for some x ∈ F − F2. The sum Y =
∑

h∈H U1
h is di-

rect by the preceding paragraph. It is straightforward to verify that CY (H) ={∑
h∈H v

h : v ∈ U1

}
. By definition, K acts trivially on CY (H). Note also that K

normalizes each U1
h for every h ∈ H as K 6 Q. It follows now that K is trivial on

Y and hence trivial on Ux for every x ∈ F −F2 which is equivalent to that Kx acts
trivially on U for all x ∈ F − F2 as desired. �

(7) L 6 Z(Q) and hence the group LCQ(W )/CQ(W ) acts by scalars on W.

Proof. Recall that [L,Q] 6 CQ(U) by (5). This gives [LF2 , Q] 6 CQ(U). On the
other hand [Lx, Q] 6 [CQ(U), Q] 6 CQ(U) for any x ∈ F −F2 by (6). Then we have
[LF , Q] 6 CQ(U). It follows that [LF , Q] = 1, that is LF 6 Z(Q). �

(8) CU(H) = 0, [U, [F2, H]] = 0, and hence [Q, [F2, H]] 6 CQ(U).

Proof. It should be noted that the group [F2, H]H is Frobenius-like. If [U, [F2, H]] 6=
0 then Theorem 3.3 applied to the action of [F2, H]H on U gives that CU(H) 6= 0.
This forces that CW (H) 6= 0 and hence L acts trivially on W , which is a contra-
diction. Therefore we have CU(H) = 0 and [U, [F2, H]] = 0. As a consequence,
[U, [F2, H], Q] = 0 = [Q,U, [F2, H]]. It follows by the three subgroup lemma that
[Q, [F2, H]] 6 CQ(U). �

(9) [F2, H] = [F1, H] and [F1, H] ∩ F0 = 1

Proof. By (8), [F1, H] ∩ F0 6 CZ(F )(W ) and hence trivial. �

(10) If F1 6= F2 then the theorem follows.

Proof. Suppose that F1 6= F2 = F1F0. Since F0 is of prime order, F0 ∩ F1 = 1 and
hence F1 = [F1, H]. By (8), [W,F1] = 0. But CW (F1) = 0 as CV (F ) = 0. This
contradiction establishes the claim. �

(11) [Q,F1] = 1

Proof. Assume the contrary. Note that F1 = F2 = [F1, H]F0. In case CW (F0) 6= 0 we
apply Lemma 1.3 in [15] to the action of the Frobenius group (F2/F0)H on CW (F0)
and see that CW (F0)|H is free. Since CW (H) = 0 by (8) we must have CW (F0) = 0.
Suppose now that [Q,F0] is not contained in CQ(W ). Then the group [Q,F0]F0 is
Frobenius-like and it satisfies Hypothesis II as q is odd. This forces by Theorem
3.3 that CW (F0) 6= 0. This contradiction shows that [Q,F0] 6 CQ(W ) and hence
[Q,F0] = 1. By (8) [Q,F1] 6 CQ(W ). As F1 C F we get [Q,F1] 6 CQ(V ) = 1. �

(12) Final contradiction.

Proof. By (7), LF 6 Z(Q). Suppose that [LF , F ] is not contained in CQ(W ) and
let z ∈ [LF , F ] − CQ(W ). It follows now that

∏
f∈F z

f is a well defined element of

Q which lies in C[LF ,F ](F ) = 1. Thus, by (7), we have
10



1 =
∏
f∈F

zf = (
∏
f∈F1

zf )(
∏

f∈F−F1

zf ) ∈ (
∏
f∈F1

zf )CQ(W ).

On the other hand we have [Q,F1] = 1 by (11). That is (
∏

f∈F1
zf )CQ(W ) =

z|F1|CQ(W ) and so z ∈ CQ(W ) as |F1| is coprime to |z|. This contradiction shows
that [LF , F ] 6 CQ(W ), in fact [LF , F ] = 1. As a consequence L 6 Z(QFH) and
so CV (L) is QFH-invariant. This leads to the contradiction that [V, L] = 0 as
0 6= CV (H) 6 CV (L). �

We can now obtain an analogue of Proposition 2.11 in [13].

Proposition 4.2. Let G be a finite solvable group admitting a Frobenius-like group
FH of automorphisms of coprime order satisfying Hypothesis II with kernel F and
complement H such that [F, F ] is of prime order and [[F, F ], H] = 1. Assume that
V = F (G) = Op(G) be an elementary abelian p-group and CG(H) is nilpotent of odd
order. If CV (F ) = 1, then G = V CG(F ).

Proof. The group Ḡ = G/V acts faithfully on V . Assume that F acts nontrivially
on F (Ḡ) = S/V . Then we see by a Hall-Higman type reduction that there exists
an FH-invariant nontrivial q-subgroup Q of S of class at most 2 with [Q,F ] = Q.
It follows by Corollary 3.4 applied to the action of FH on Q that CQ(H) 6= 0. The
same corollary applied to the action of FH on V gives CV (H) 6= 0, too. Since CG(H)
is nilpotent we conclude that CQ(H) centralizes CV (H), contrary to Theorem 4.1.
Thus F is trivial on F (Ḡ). Then [F, F (Ḡ), Ḡ] = 1̄ = [F (Ḡ), Ḡ, F ]. It follows now
by the three subgroup lemma that [Ḡ, F ] 6 CḠ(F (Ḡ)) 6 F (Ḡ). Hence [Ḡ, F ] = 1̄
as [Ḡ, F ] = [Ḡ, F, F ] by coprimeness. �

Theorem 4.3. Let G be a finite group admitting a Frobenius-like group FH of auto-
morphisms of coprime order satisfying Hypothesis II with kernel F and complement
H such that [F, F ] is of prime order and [[F, F ], H] = 1. Suppose that the fixed-point
subgroup CG(H) of the complement is nilpotent of odd order. Then the index of the
Fitting subgroup F (G) is bounded in terms of |CG(F )| and |F |.
Proof. This can be proven as in Theorem 2.1 in [13] by the replacement of Proposi-
tion 2.11 in [13] by Proposition 4.2 above. �
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