
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007 3431

Systematic Message Schedule Construction
for Time-Triggered CAN

Klaus Schmidt and Ece G. Schmidt

Abstract—The most widely used standard for in-vehicle com-
munication networks that interconnect electronic control units is
the controller area network (CAN). However, the event-triggered
architecture of CAN introduces several issues, such as predictabil-
ity, signal jitter, and reliability. Different time-triggered networks
are being developed to address these issues. In this paper, we focus
on time-triggered CAN (TTCAN), which achieves time-triggered
behavior by implementing time-division multiple access on the
existing CAN network standard. The main task is thus to construct
a message schedule for a given set of messages while fulfilling
certain performance criteria. To this end, we provide a formal
framework for the construction of feasible message schedules in
TTCAN networks by considering several performance metrics,
such as bandwidth utilization and jitter, as well as the hardware
constraints of the TTCAN controller specification.

Index Terms—Performance analysis, real time, scheduling,
time-triggered controller area network (TTCAN), vehicular com-
munication networks.

I. INTRODUCTION

IN-VEHICLE electronic systems have been replacing their
mechanical and hydraulic counterparts since the 1970s. The

growing capabilities and reliability of hardware and software
enable to add new functionalities. In today’s vehicles, some
electronic systems, such as the antilock braking system, elec-
tronic stability program, and electric power steering, are re-
sponsible for driving safety and comfort. Furthermore, devices
in the vehicle body such as windows, wipers, and communi-
cation and entertainment equipment, such as the radio, digital
video disc, and navigation systems, are also controlled by
electronic control units (ECUs). ECUs are embedded systems
with a microcontroller, sensors, and actuators, and they require
communication to execute most of their tasks. In today’s luxury
cars, up to 70 ECUs exchange 2500 signals using networks that
are similar to computer networks [1], [2].

Communication networks in vehicles or, in general, embed-
ded systems require efficient and timely operation. Most of
the messages transmitted over these networks are sporadic or
periodic real-time messages that have deadlines defining the
latest transmission time. Sporadic messages are generated when
certain events, such as the braking action of a driver, occur.

Manuscript received February 15, 2007; revised May 30, 2007 and July 17,
2007. The review of this paper was coordinated by Prof. X. Shen.

K. Schmidt is with the Institute of Control and Automation, University
of Erlangen-Nuremberg, 91058 Erlangen, Germany (e-mail: klaus.schmidt@
rt.eei.uni-erlangen.de).

E. G. Schmidt is with the Department of Electrical and Electronics En-
gineering, Middle East Technical University, Ankara 06531, Turkey (e-mail:
eguran@metu.edu.tr).

Digital Object Identifier 10.1109/TVT.2007.906413

However, the sporadic messages also have periods that deter-
mine the minimum time interval between any two consecutive
generations of these messages.

In-vehicle communication networks can be classified as
event-triggered, time-triggered, and hybrid networks according
to methods of granting medium access to the ECU nodes. In
event-triggered communication, the messages between ECU
nodes are generated based on the occurrence of significant
events, and network access is dynamically granted to ECUs
based on message priorities. Time-triggered communication
controls the medium access using predefined time windows
[time-division multiple access (TDMA)]. The features of these
two access methods are combined in hybrid medium access.
A typical approach is dividing the time into periods allocated
for real-time and nonreal-time traffic and allocating fractions of
bandwidth for both types of traffic [1], [2].

Different network architectures were developed to perform
different types of functions at different speeds. The Local
Interconnect Network [3] is a low-speed/low-cost network de-
signed for communication between ECUs and their sensors
and actuators. It supports applications such as controlling of
doors, seats, windows, or climate. Faster networks (up to and
above 1 Mb/s), such as Time-Triggered Protocol (TTP) [4],
ByteFlight [5], or FlexRay [6], are used for applications that
require robust and predictable operation such as x-by-wire
systems. These networks are all time triggered or hybrid [2].

The most widely used in-vehicle communication network
in automotive systems is the controller area network (CAN)
[2], [7]. It provides low-cost robust communication with
bounded network delay among ECUs and sensors with a data
rates between 125 kb/s and 1 Mb/s and is used for a very
wide range of applications, such as chassis control and power
train. CAN is an event-triggered network. The nodes access the
network based on the priority of the frame to be transmitted.

The new functionalities in automotive electronics such as
x-by-wire systems require deterministic behavior and high per-
formance. Although the event-triggered CAN bus can provide
bounded delay for medium access, it is not possible to know the
exact time instant when a given message will be sent in advance,
which leads to jitter of periodic messages. In addition, if there
are transmission errors, the automatic retransmission feature of
the CAN bus might increase the load, and the messages can
miss their deadlines [8].

These issues motivate the use of a time-triggered approach
for today’s automotive technologies. To this end, several time-
triggered networks, such as TTP, FlexRay, ByteFlight, and
time-triggered CAN (TTCAN), have been recently developed
[9], [10]. In this paper, we focus on the TTCAN protocol that

0018-9545/$25.00 © 2007 IEEE

3432 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

imposes a TDMA structure over the CAN medium access
according to the stable International Standards Organization
standard as of 2004 [11]. Messages are sent in a time-triggered
fashion, and conflicts are resolved by the bit-wise arbitration
mechanism of CAN. TTCAN can be implemented using the
existing CAN network infrastructure and with small and inex-
pensive changes to the current CAN chips. Hence, economical
gradual migration from CAN to TTCAN is possible to pro-
vide deterministic behavior and better real-time performance
[7], [8]. A detailed comparison of the performance of CAN and
TTCAN networks is provided in [1]. It is stated that TTCAN
networks have less average latency response time and jitter
compared to event-triggered CAN when reacting to asynchro-
nous external events.

In this paper, we address the message-scheduling problem
in TTCAN networks. We provide a formal description of the
problem including the definition of performance metrics such
as bandwidth utilization and jitter. Analyzing the constraints
that result from the TTCAN specifications and the hardware
implementation, we identify properties of message periods that
are favorable for the scheduling process. Based on this result,
we present a systematic approach to construct feasible message
schedules that guarantee that all messages meet their deadlines
for both periodic and sporadic messages. Additionally, our
approach takes the performance metrics into consideration to
produce efficient message schedules.

The structure of this paper is as follows. In Section II,
the TTCAN protocol, constraints, performance metrics, and
scheduling issues are discussed. The impact of the message
properties on the performance of the TTCAN network is an-
alyzed in Section III. Our systematic approach for message
scheduling is presented in Section IV. Conclusions and an
outline of future work are given in Section V.

II. TTCAN PROTOCOL

A. Description

The TTCAN network is designed as another layer that oper-
ates on the event-triggered CAN network. It uses standard CAN
frames and the CAN medium access technique in addition to its
time-triggered access. Hence, we first describe the features of
the standard CAN protocol that are relevant to our work.

1) Event-Triggered CAN: The signals to be transmitted on
the CAN network are packed in frames with unique identifiers.
The network access is based on the frame priorities carried
in the frame identifier. CAN2.0A (or “standard CAN”), which
is used for in-vehicle communications, has an 11-bit identifier.

The nonreturn-to-zero bit representation with bit stuffing of
length 5 is used in CAN frames to maintain bit timing. The
standard CAN data frame can contain 0–8 data bytes, and
the largest CAN frame is 135 bits, including all the protocol
overheads. More precisely, for a signal j with bj data bits, and
thus dj = �bj/8� data bytes, a message of length

Cj = 47 + 8dj +
⌊

34 + 8dj
4

⌋
(1)

Fig. 1. TTCAN SM.

is constructed (�·� and �·� denote the ceiling and floor opera-
tors, respectively). In this expression, 47 is the size of the fixed-
form bit fields of the CAN frame, and �(34 + 8dj/4)� is the
amount of the required bit stuffing, where stuffed bits are also
subject to bit stuffing [12].

The medium access is given by a carrier-sense multiple-
access scheme with a nondestructive bit-wise arbitration pro-
tocol. Any CAN node may start a transmission when the bus
is idle. If at least two nodes start to transmit at the same
time, the conflict is resolved with a bit-wise arbitration of
the frame identifiers by wired-and-mechanism. The dominant
bits overwrite the recessive bits, and the stations that observe
a different bit on the bus than the bit that they sent stop
transmission and start listening. Hence, the identifier with the
lowest binary value has the highest priority. The node that loses
the arbitration retransmits its frame when the bus becomes idle.
The arbitration mechanism relies on the fact that all of the
messages have distinct identifiers (11 bits for the base frame
format). If a transmission error occurs on a CAN network, then
the corrupted frame automatically reenters the next arbitration
phase [2], [7]. Medium access delay bounds can be computed
if the signal periods and the minimum interarrival times of the
sporadic signals are known [13].

2) TTCAN: The time-triggered behavior of the TTCAN net-
work is achieved by implementing synchronous timing in each
network node. A reference message is periodically transmitted
to ensure that all nodes are synchronized to a common global
time. After each reference message, the nodes increment a local
counter once every network time unit (NTU). NTU is the unit
of the cycle time in the TTCAN network.

There are two levels of synchronization in TTCAN networks.
Level 1 synchronization provides the minimum precision re-
quired to support the time-triggered scheduling. The NTU in
Level 1 is the network bit time. Level 2 synchronization, which
can provide a high-precision global time base related to the
physical second, makes it possible to synchronize and interface
TTCAN to other networks such as TTP.

The time-triggered operation is achieved by using a fixed
precomputed schedule that cyclically repeats. The schedule is
organized as a matrix called the system matrix (SM; see Fig. 1).
The rows and columns of the SM form time windows. The
beginning of each time window [each transmission column
(TC)] is indicated by a time mark (TM). Each row of the SM
is called a basic cycle (BC) that starts with a reference message
transmitted by a node in the network that assumes the role of
the time master. The reference message carries 1 B of data for
Level 1 CAN realization and 4 B of data for Level 2 CAN
realization. In this paper, we assume that the reference message

SCHMIDT AND SCHMIDT: SYSTEMATIC MESSAGE SCHEDULE CONSTRUCTION FOR TIME-TRIGGERED CAN 3433

TABLE I
TRIGGERS FOR NODE n

is 4 B, and when it is packed, it generates a 95-bit frame
[see (1)]. The time windows in the SM have three different
types. An exclusive time window is assigned to a single specific
message. No other messages are transmitted during an exclu-
sive window. An arbitrating time window is assigned to several
messages that are transmitted by a group of nodes. Possible
conflicts among these messages are resolved by the bit-wise
arbitration mechanism of CAN. Messages are transmitted in the
arbitrating window only if there is sufficient time remaining to
complete the message transmission. Two or more arbitrating
windows that appear back to back can be merged. The free
time windows have no scheduled messages and are reserved
for future use. The retransmission functionality of the event-
triggered CAN is disabled in TTCAN, except for unsuccessful
reference messages and in merged arbitrating windows.

A node in TTCAN stores the information for the TMs of
its own messages in register sets called triggers. The transmit
triggers (Tx_Trigger) store information related to the sent mes-
sages, and the receive triggers (Rx_Trigger) store information
related only to the messages to be received in exclusive win-
dows. Additionally, the reference message has its own trigger
(Ref_Trigger). Once a Tx_Trigger is activated, the node can
start transmitting during a maximum time interval known as
the Tx_Enable window. Each trigger has a pointer to the related
message, a reference to the TC that the related message is
transmitted, and an indication of the type of window. A message
can be periodically repeated multiple times in a TC. In this case,
the trigger contains a Cycle_Offset (CO) that gives the BC in
which the message appears the first time in TC. The period of
the message repeated in the TC is stored in the Repeat_Factor
(RF) field, which is set to 0 if the message does not periodically
appear [9].

To illustrate the above concepts, we consider a given node n
on the TTCAN network that sends a periodic message msgA
and a sporadic messagemsgK and receives a periodic message
msgD. An example SM is depicted in Fig. 1, and the corre-
sponding trigger information is shown in Table I.

The SM is column oriented. Once a column size is decided
for the first BC, it has to stay constant. The types of windows in
the same column can be different for different BCs.

B. TTCAN Scheduling: Issues and Previous Work

The transmission schedule for the TTCAN SM is static, and
it is computed offline. There are several constraints and perfor-
mance metrics to be considered when the SM is computed.

• Schedulability constraint: The real-time messages must be
transmitted before their deadlines. This is very important,
especially considering the safety critical nature of automo-
tive applications.

• Hardware constraints: The triggers that contain informa-
tion about the sent and received messages are stored in a
fixed-size memory on the TTCAN chip. Hence, the total
number of triggers per node is limited.

• Utilization: This metric defines how efficiently the net-
work bandwidth is used. Considering the increasing new
functionalities and devices in automotive electronics, it is
crucial to efficiently utilize the available bandwidth.

• Jitter: This metric defines how much the transmitted
periodic messages deviate from the periodicity.

The constraints and metrics described above were addressed
in different articles. The basic guidelines to design the SM
for a given message set are discussed in [9], and several
scheduling strategies are proposed in [14]–[17] for TTCAN
networks. The performance of the different proposed ap-
proaches is tested using two benchmark message sets, as well
as self-constructed example message sets. The SAE benchmark
message set [18] as introduced by the Society of Automotive
Engineers (SAE) consists of 53 periodic and sporadic messages
sent between seven different subsystems, such as batteries,
brakes, and a vehicle controller in a prototype electric car.
The PSA benchmark set is provided by the Peugeot–Citroen
Automobile Company (PSA), and it was implemented in a
prototype car. It consists of 12 periodic messages that are
exchanged among six nodes [12].

A stochastic optimization algorithm for constructing the
TTCAN SM is suggested in [14]. Their approach consists of
a scheduling phase and an optimization phase to minimize the
jitter. In the scheduling phase, a set of initial system matrices
is constructed observing the average periods of messages in the
schedule. These initial matrices are then optimized by applying
a set of random transformations and keeping or discarding
the resulting matrices according to the average jitter over the
matrix duration. The approach is applied to the SAE and PSA
benchmark sets (some of the results are obtained for modified
versions of these message sets). The authors conclude that
after a sufficient number of iterations (on the order of tens of
thousands), matrices with small jitters can be found. No results
or discussions are presented regarding the schedulability of
the messages, bandwidth utilization, number of triggers, and
sporadic messages.

A heuristic method for TTCAN scheduling is presented with-
out a systematic approach in [16]. Rate monotonic scheduling
is first applied for the periodic messages, and then, arbitrating
windows are placed. The authors make sure that a certain
trigger count per node is not exceeded. The approach is demon-
strated on a self-constructed example message set. The authors
conclude that using a long BC and evenly distributed arbitrating
windows results in better performance for average message
delay, jitter, and bus frequency response.

Similarly, a heuristic approach is proposed in [17]. SM is
chosen as the least common multiple (LCM) of all the message
periods. The schedulability of the messages in the arbitrating
windows is checked by using the approach in [13] after placing
the exclusive windows in the SM. The method is demonstrated
on a set of messages used for an experimental mechatronic
platform. The presented results focus on the schedulability
of the SM.

3434 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

A TTCAN scheduler called Smart-PLAN is presented in
[15]. Messages are placed in the first BC according to their
slacks (time left until deadline), and the column widths of the
matrix are determined by this first BC allocation. The remaining
messages are placed in the rest of the SM in the columns that
they can fit according to their slack values. The approach is
demonstrated using the SAE benchmark, and the results for
bus utilization are presented. The jitter of periodic messages,
sporadic messages, and the number of triggers per node are not
considered in this paper.

C. Our Approach

In this paper, we give a formal discussion of the requirements
and methods for scheduling messages on a TTCAN network.
We first analyze the periodic messages and identify a condition
on the period of these messages. We give a formal description,
including performance metrics, of the scheduling problem and
investigate optimal scheduling strategies (with zero jitter and
a minimum network utilization and number of Triggers) for
these periodic messages. Then, we examine the case where a
set of periodic messages does not fulfill the stated condition.
In Section IV, we present three systematic strategies to reduce
the impact of such periodic messages on certain performance
metrics. In particular, we propose reduction of message periods,
reduction of the matrix duration, and packing signals in frames.
Our method for periodic messages is complemented with an
algorithm for scheduling sporadic messages in Section IV-C,
and an example SM for the SAE benchmark message set is
designed. Our approach is novel in both problem formulation
and proposed solution. Different from other approaches, we an-
alyze the properties of the message sets and the constraints to be
fulfilled and construct feasible system matrices by considering
multiple performance metrics rather than focusing on a single
metric or constraint.

III. INVESTIGATION OF SIGNAL PROPERTIES

A. Definitions, Constraints, and Performance Metrics

We introduce the following notation to formally describe the
problem under investigation.

We assume that a set ofN nodes N = {1, . . . , N} communi-
cates on a TTCAN network, and we denote S = {S1, . . . , SF }
as the set of signals to be sent. For transmission on the net-
work, signals are compiled to form a set of messages M =
{M1, . . . ,MG}, and we assume that more than one signal trans-
mitted by the same node can be contained in a single message.1

We introduce the maps tM : M → N and rM : M → 2N ,2

where tM(Mm) is the transmitter node, and rM(Mm) is the set
of receiver nodes of the messageMm ∈ M. Hence, we assume
that broadcast or multicast of messages is possible. pmm,
dmm, and lmm = 47 + 8�bmm/8� + �(34 + 8�bmm/8�/4)�
denote the period, deadline, and length of the message Mm,
respectively, where bmm is the number of data bits of Mm.

1Formal methods to construct the set of messages from a given set of signals
are discussed in Section IV-D.

22N is the power set of N .

Messages can be periodic or sporadic, and we assume that for
periodic messages pmm = dmm and for sporadic messages
pmm ≥ dmm. We express message periods, deadlines, and
lengths in multiples of the bit time τbit. Note that bit and τbit

are used interchangeably fitting to the context.
We describe the SM according to Section II-A with its BC

width B and its matrix column widths {C1, . . . , CH} expressed
in τbit. Note that

∑H
c=1 Cc = B. We denote the number of lines

of the SM by L = 2q , q ≤ 6. The matrix cycle T := B · L is the
duration of the SM in τbit.

Each message Mm ∈ M has a set of Tx_Triggers
T m = {Txm

1 , . . . , Tx
m
Km

} and a set of Rx_Triggers Rm =
{Rxm

1 , . . . , Rx
m
Lm

}. The triggers indicate the starting time of
the window in which a message is transmitted. Unless other-
wise stated, the periodic messages are transmitted in exclu-
sive windows, and sporadic messages are transmitted in the
arbitrating windows. Each Tx_Trigger for Mm is located at
the sending node tM(Mm), and the corresponding Rx_Triggers
are located at the receiving nodes rM(Mm). For Txm

t =
(cmt , r

m
t , p

m
t), cmt is the TC of the Tx_Trigger, rmt is the line

of its first occurrence (CO), and 2pm
t is the period of the

message expressed in BCs (RF), where 0 ≤ pmt ≤ q. Note that
Rxm

t = Txm
t for periodic messages, and Rxm

t is not defined
for sporadic messages. Hence, the number of occurrences of
Mm in the column that is indicated by a Tx_Trigger Txm

t is
2q−pm

t . There can be more than one Tx_Trigger for any given
message that differs by the TCs and possibly RFs, and there
can be more than one message with the same Tx_Trigger for
arbitrating windows.

Consider a message Mm with its related set of Tx_Triggers
T m. Then the total amount of time allocatedAMm

and the total
amount of time used for transmitting the signal data DMm

for
this message in one matrix cycle can be expressed as

AMm
=

Km∑
t=1

2q−pm
t Ccm

t

DMm
=
T

pmm
· bmm.

(2)

Our performance metrics are based on (2).
1) Utilization (U) and Matrix Load (ML): We provide two

metrics that show the efficiency of bandwidth use instead of
giving a single utilization metric. The network utilization U is
the fraction of the allocated transmission time that is used for
signal data transmission, i.e.,

U =
∑G

m=1DMm(∑G
m=1AMm

)
+ 95 · 2q

(3)

where the term 95 · 2q represents the time for the transmission
of the reference message in 2q matrix lines. The matrix load
ML is the fraction of the matrix cycle that is allocated for the
transmission of messages

ML =

(∑G
m=1AMm

)
+ 95 · 2q

T
. (4)

SCHMIDT AND SCHMIDT: SYSTEMATIC MESSAGE SCHEDULE CONSTRUCTION FOR TIME-TRIGGERED CAN 3435

The network utilization indicates how efficiently the existing
messages are scheduled in a given SM, whereas the matrix load
represents the amount of new messages that can be added to an
existing SM.

2) Jitter (J): The periodic messages are to be periodically
delivered to the receiving nodes. Hence, ideally, the exclusive
windows for a specific message should be placed in the SM
such that the message is transmitted with the same period.
Consider a periodic message Mm. Then, the time instants
when Mm is scheduled with a Tx_Trigger Txm

t ∈ Tm are
(
∑cm

t −1
k=1 CK) +B · rmt + j · 2pm

t ·B, j = 0, . . . , 2q−pm
t .

Let {wm
t , . . . , w

m
Wm

} denote the ordered set of time instants
in the matrix cycle that the message is scheduled with its
Tx_Triggers, where Wm :=

∑Km

t=1 2q−pm
t is the number of

exclusive windows allocated for the message Mm. Then, the
local jitter Jm

K for each time instant wm
K , k = 1, . . . ,Wm is

defined as the deviation of the intertransmission time at wm
K

from the actual message period pmm, i.e.,

Jm
K =

{
|wm

K − wm
k−1 − pmm|, for k �= 1

|wm
1 + T − wm

Wm
− pmm|, otherwise . (5)

The average jitter Jm forMm over the matrix cycle and the
average jitter J for the entire SM are

Jm =
∑Wm

k=1 J
m
K

T
and J =

G∑
m=1

Jm. (6)

3) Trigger Count for Node n: We assume that the informa-
tion for the reference message is stored in a separate trigger
Ref_Trigger. Then, the number Tn of triggers for a node n is
the sum of its Tx_Triggers, Rx_Triggers, and Ref_Trigger, i.e.,

Tn =
∑

m,tM(Mm)=n

Km +
∑

m,n∈rM(Mm)

Lm + 1. (7)

Note that, as discussed in Section II-B, there are practical
hardware constraints that are both imposed by the TTCAN
standard and depend on a specific TTCAN controller chip [9].
In particular, L = 2q , q ≤ 6, and B ≤ 216, and the number of
triggers per node (Tn) is smaller than 32, while the repetition
period of a trigger has to be a power of 2. We also take the
Tx_Enable period as defined in Section II-A2 to be 16 τbit.

B. Relationship Between Signal Periods and BC

To point out the issues related to the construction of the SM
for a given set of nodes and an associated set of periodic mes-
sages, we first investigate under which conditions the matrix
load and the trigger count are minimized with zero jitter while
meeting all specified message deadlines.

1) Equal Message Length: We first assume that all mes-
sages have an equal length lm. Furthermore, we identify the
smallest message period with pm1 and require that the period
of any messageMm can be represented as pmm = 2jpm1 with
j ≤ jmax ≤ 6, i.e., all message periods are multiples of the
smallest period, and the multiplier has to be a power of 2. We
denote rj as the number of messages with the respective period
2jpm1.

Fig. 2. SM construction.

Using the above assumptions, we propose the following
SM construction: The BC length is B = pm1; the num-
ber of lines is L = 2jmax ; and we compute the sum as
M :=

∑jmax
j=0 rj2

jmax−j , which represents the number of mes-
sages transmitted in one matrix cycle. Including the Tx_Enable
period of 16 τbit and the reference message with 95 τbit, the
number of bits sent per matrix cycle is M · (lm+ 16) + 95 ·
2jmax . Formally, the following result can be stated.

Lemma 1: Assume that the message set described above is
given. The set of messages is schedulable if and only if

(lm+ 16) ·
jmax∑
j=0

rj2jmax−j + 95 · 2jmax ≤ pm12jmax = B ·L.

(8)

If the schedulability is given, the SM with the minimum num-
ber of G Tx_Triggers (i.e., one Tx_Trigger per message) is
achieved by choosing L = 2jmax , B = pm1, and the number
of columns is �(M/2jmax)�.

Proof: We first show that the schedulability of the mes-
sage set implies (8) by contradiction. Assume that

(lm+ 16) ·
jmax∑
i=0

rj2jmax−j + 95 · 2jmax > pm12jmax . (9)

The number pm12jmax represents the largest message period,
and thus every message with period pm12j has to be trans-
mitted 2jmax−j times during the time pm12jmax . The sum
of all messages to be transmitted during pm12jmax is thus∑jmax

i=0 rj2
jmax−j with message length lm+ 16. Accounting for

the 95 · 2jmax reference message bits, the total number of bits
transmitted in a matrix cycle is (lm+ 16) ·

∑jmax
i=0 rj2

jmax−j +
95 · 2jmax > pm12jmax because of the assumption in (9). Thus,
the message set is not schedulable.

To show the reverse direction of the statement, we construct
an SM that provides schedulability of the message set using the
parameters L = 2jmax and B = pm1 and the column widths
Cc = lm+ 16 and c = 1, . . . , �M/2jmax�. The Tx_Triggers
for the columns are specified as follows.

• For each message with period pm1 · 2j , j ≥ 1, a
Tx_Trigger with repetition period 2j is used. 2q−j such
messages share a column.

• If the messages of a certain period do not complete a
column, the column is filled with messages of a higher
period, and the corresponding Tx_Triggers are introduced.

The construction of the SM is illustrated in Fig. 2. The messages
M1 and M2 have the period pm1; M3, M4, and M5 have

3436 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

the period 2 · pm1; and M6, M7, and M8 have the period
22 · pm1. The described construction procedure indeed results
in �(M/2jmax)� matrix columns with enough space for all
messages and one Tx_Trigger per message. �

Lemma 1 provides a schedulability result for a partic-
ular message configuration and proposes a systematic SM
construction such that all message deadlines are met without
jitter. The network utilization and the matrix load evaluate to

U =

G∑
m=1

2q pm1
pmm

bmm

2q

(
G∑

m=1

pm1
pmm

C1 + 95
)

ML =
2q

(
G∑

m=1

pm1
pmm

C1 + 95
)

T
.

This idea can be applied to the example constructed in
[16], which exhibits the message properties required in this
section. The smallest message period is 5 ms. As τbit = 2 µs,
pm1 = 2500 τbit. Furthermore, it is assumed that all messages
have a fixed length of 8 B, which corresponds to a transmis-
sion time of 151 τbit. There are r0 = 3, r1 = 5, r2 = 4, and
r3 = 4 messages with period pm1, 2pm1, 22pm1, and 23pm1,
respectively. Consequently, we choose L = 23 and B = pm1,
and �(M/2jmax)� = �(56/23)� = 7 columns are needed. The
network utilization is U = 3584/9216 = 39%, and the matrix
load is ML = (9216/23 · 2500) = 46%. Note that Lemma 1
can also be applied to the message set in [17], i.e., an optimal
schedule can be computed for the message sets in [16] and [17]
using our method.

2) Different Message Lengths: The previous section only
considers the case where each message has the same length.
This assumption can be lifted by filling the matrix columns with
different size messages, where the largest message determines
the column width. It is readily observed that this strategy yields
a more conservative schedulability result, as messages that
are smaller than the respective column size use up bandwidth
without transmitting data. In this section, we outline the con-
struction of the SM with the optimal configuration, where the
least amount of bits without data is transmitted.

Analogous to the considerations for an equal message length,
the number of matrix columns for a given message set with
rj messages of period 2j · pm1, s = 1, . . . , jmax evaluates to
�(

∑jmax
j=0 rj2

jmax−j/2jmax)�. Similar to the previous section,
the number of Tx_Triggers needed to schedule all messages is
equal to the number of messages

∑jmax
j=0 rj . Associating each of

the required Tx_Triggers Tm
1 to a messageMm, the repetition

period of Tm
1 is specified, i.e., Tm

1 = (cm1 , r
m
1 , pmm/pm1). Let

T be the set of all Tx_Trigger combinations {T 1
1 , . . . , T

G
1 } that

obey the specifications of the TTCAN standard for the given
message set. We want to solve

arg max
τ∈T
U = max

τ∈T

∑G
m=1DMm∑G

m=1AMm
+ 95 · 2q

. (10)

TABLE II
MESSAGES FOR THE PSA EXAMPLE

Fig. 3. SM for the PSA example.

The maximization can, for example, be evaluated by the ex-
haustive enumeration of all elements in T and determining the
minimum value for the sum in (10) with the corresponding set
of Tx_Triggers.

The procedure described above has been applied to the
modified PSA example in [14] with the message set in
Table II (pm1 = 10 000 τbit). An optimal configuration with a
utilization of U = (1264/5604) = 22.56% and a matrix load
of ML = (5604/10 000) = 7.01% has been constructed, as
shown in Fig. 3, where the utilization of the columns is indi-
cated by the grey boxes. Note that although [14] suggests to
provide optimized results, the network utilization (26.49%) and
the matrix load (8.38%) differ from our results. Also, observe
that the space between the allocated exclusive windows can be
arbitrarily filled with arbitrating or free windows.

C. Limitations

The results stated in the previous section rely on the fact that
all periods are multiples of the smallest period. In this section,
the implication of lifting this assumption while keeping all the
other requirements is discussed. That is, it is no longer true
that all message periods can be represented as 2jpm1 with a
smallest period pm1. To schedule the messages periodically
without jitter, the matrix cycle T has to be an integer multiple
of the LCM of all the message periods. It can thus be written as
T = 2jmax−jpmmK for any message Mm, where j is chosen
such that 2jmax−j contains all factors of 2 of a prime factor-
ization of T/pmm, and the nonharmonic divisor K does not
contain any multiples of 2. Messages whose periods are either
multiples or divisors of the BC length B can be scheduled in
the same columns in each row where they appear. However,
messages that do not fulfill the above property have to be
scheduled in different columns to avoid jitter. For a detailed
discussion, we distinguish messages Mm with pmm < B and
pmm > B.

1) pmm < B: The offset om between the occurrences
of Mm in consecutive lines of the SM is om =
�(T/L · pmm)�pmm − (T/L) and can be written as om =

SCHMIDT AND SCHMIDT: SYSTEMATIC MESSAGE SCHEDULE CONSTRUCTION FOR TIME-TRIGGERED CAN 3437

Fig. 4. Column offset.

TABLE III
PERIODIC MESSAGES FOR THE SAE EXAMPLE

�(2jmax−jpmmK/2jmax · pmm)� pmm − (2jmax−jpmmK/
2jmax)=(pmm/2j)(�(K/2j)�2j−K) [see Fig. 4(a)]. Writing
K= 2j · a+ b, the offset is

om =
pmm

2j

(
(a+ 1) · 2j − a · 2j − b

)
=
pmm · (2j − b)

2j

(11)

i.e., if (2j − b/2j) is not an integer, then the message has to
be transmitted in a different column in consecutive matrix lines
if no jitter shall be introduced. In this case, the message can
be scheduled in the same column in each 2j th matrix line, and
(T/L)(2j/pmm)=(pmm ·K ·2jmax−j ·2j/2jmax ·pmm) = K
Tx_Triggers are needed.

2) pmm > B: The offset om between the occurrences of the
message in different lines of the SM is om = pmm − �(pmm ·
L)/T �T/L and can be written as pmm(1 − �(pmm · 2jmax /
pmm · K · 2jmax−j)� (pmm ·K · 2jmax−j /pmm · 2jmax)) =
(pmm/2j) (2j − �(2j / K)�K) [see Fig. 4(b)]. Writing
2j = K · c+ d, the resulting offset is

om =
pmm

2j
(K · c+ d− c ·K) =

pmm · d
2j

. (12)

If pmm · d/2j is not an integer, then Mm has to be sent in
different columns and can be scheduled in the same column in
each 2j th matrix line with (T/L)(2j/pmm) = K Tx_Triggers.

The following SAE benchmark example introduced in [18]
manifests the issues pointed out in this section.

D. Application to Benchmark Examples

The parameters relevant for the discussion of the SAE exam-
ple are summarized in Table III. (Note that the original message
identifications are used.) All messages carry at most 1 B of
data, and the smallest message period is pm1 = 2500 τbit at
a network speed of 500 kb/s.

Following the above discussion, we choose the LCM of
the periodic messages as the matrix cycle T = 500 000 τbit.
As (T/pm1) = (500 000/2500) = 200 > 26 = 64, it is the
case that pm1 < (T/2jmax). It holds that T = pm1 · 23 · 25,
i.e., 2jmax−j = 23 with the nonharmonic divisor K = 25. The
choice of L = 2jmax = 25 results in 2j = 22, and thus, K =
25 = 6 · 22 + 1. According to Section III-C1, (2j − b/2j) =
(3/4), and the message M1 has to be scheduled in differ-

ent columns in four consecutive lines. Furthermore, K = 25
Tx_Triggers are needed for each message with period pm1.
Similarly, for messages with period pmm = 20 · pm1, it holds
that 20 · pm1 > B, according to Section III-C2. We com-
pute T = 20 · pm1 · 2 · 5, i.e., 2jmax−j = 2 and K = 5. Then,
L = 25 implies that 2j = 24 = 3 ·K + 1. The offset is
(20 · pm1 · 1/2)4 = (5/4) · pm1, and K = 5 Tx_Triggers are
needed to schedule these messages. Evaluating (4), the matrix
load for periodic messages of the SAE example is 24.3%.

Looking at node 1, two messages with period pm1 and one
message with period 20pm1 have to be transmitted, i.e., already,
2 · 25 + 5 = 55 Tx_Triggers are needed. It can be concluded
that the requirement of zero jitter leads to very high Tx_Trigger
counts for messages that exhibit a nonharmonic divisor K
different from 1.

In the next section, we address the above issues and develop
different systematic methods to construct the SM if the proper-
ties required in Section III-B2 are not fulfilled. In particular, we
consider the following ideas.

• Message periods can be reduced to fulfill the requirements
listed in Section III-B2. This increases the matrix load and
introduces jitter.

• The number of occurrences of messages with the small-
est period (and thus the number of Tx_Triggers) can be
reduced by the choice of a smaller matrix cycle. This
increases the matrix load.

• The number of messages can be reduced by packing
signals with equal periods that are transmitted by the same
node into one message. This decreases the network load
but possibly increases the number of Rx_Triggers.

IV. SYSTEMATIC SM CONSTRUCTION

A. Reduced Message Periods

The number of Tx_Triggers in the above example is large
as the requirement of zero jitter leads to exclusive windows
in different matrix columns for one message (see Fig. 4). If
the trigger count has to be reduced, one idea is to realign
exclusive windows in consecutive matrix lines while lifting
the zero jitter requirement. Considering a message Mm with
pmm ≤ B and the offset om = pmm(2j − b/2j), according to
(11), the jitter in lines k = 2, . . . , 2j is (B/pmm) · k · om, and
thus, the overall jitter per matrix cycle (T = 2j · 2jmax−j ·B) is

Jm =
B · pmm · (2j − b)
2jmax ·B · pmm · 2j

2j−1∑
k=1

k=
(2j − b)(2j − 1)

2jmax+1
. (13)

Similarly, the jitter for a message with pmm > B and offset
om = pmm · d/2j with B · 2j/pmm occurrences in 2j

consecutive lines is

Jm =
d

2jmax+1
(K + 1). (14)

Note that the Tx_Trigger count is reduced from K to
�(B/pmm)� for pmm ≤ B and to 1 for pmm > B. The idea
of adjusting message periods to the BC length can indeed be
used to reduce the trigger count if the resulting jitter is tolerable.

3438 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

Fig. 5. SM for the SAE benchmark message set.

Moreover, the above results can be viewed from a different
perspective. The jitter Jm depends on the nonharmonic divisor
K either directly in (14) or indirectly via b or d in (13) and (14).
Hence, to avoid jitter, it is desirable to have a BC length B that
is either a multiple or a factor of the different message periods.
This observation is further exploited in the next section.

B. Reduction of the Matrix Cycle

To keep the number of Triggers small, it is desired that the
nonharmonic divisorK = (T/2jmax−jpmm) is small, and thus,
j is as small as possible.

The benchmark example in Section III-D requires a matrix
cycle T that is 200 times larger than the smallest message
period pm1, which results in a comparably long BC and a
large number of Tx_Triggers. This effect can be circumvented
by choosing the matrix cycle T smaller than the LCM of the
message periods, such that the messages Mm with smaller
periods than T , i.e., pmm ≤ T , can be represented as T/2j .
In that case, we define L = (T/pm1) = 2jmax and schedule the
messages with smaller periods than T according to the strategy
in Section III-B. To address the messages Mm with periods
larger than T , it can be observed that such messages have to be
scheduled with the period of the greatest common divisor (gcd),
gcd(T, pmm), of the matrix cycle and the message period to be
transmitted at the correct time instants (i.e., without jitter).

This idea is applied to the SAE example in Section III-D. We
choose T = 20000 τbit = 23 · pm1 = 22 · 2pm1 = 21 · 4pm1

as the matrix cycle. The number of lines is thus L = 23.
Noting that all messages have the same length, the messages
with periods pm1, 2pm1, and 4pm1 can be scheduled as
in Section III-B1. The result can be seen in the first ten columns
of the SM in Fig. 5. Messages with periods 200pm1 and 20pm1

have to be scheduled with the periods gcd(T, 200pm1) = T
and gcd(T, 20pm1) = T/2, respectively. The required
13 columns for the periodic messages of the SAE example are
depicted in Fig. 5 (the columns are placed next to each other
for illustration purposes). Note that only one Tx_Trigger and
one Rx_Trigger are required for each message. The node with
the largest amount of triggers is node 6 (vehicle controller)
with seven Tx_Triggers and 13 Rx_Triggers.

The above discussion suggests that the more frequent trans-
mission of messages Mm with a period that is larger than
the matrix cycle increases the matrix load. For example, the
messages with period 200pm1 are now scheduled in every
matrix cycle, but a new value is only transmitted in every

25th matrix cycle, which implies that 24 of the 25 matrix
cycles are unused. Assuming that the Tx_Trigger for Mm is
Txm

1 = (cm1 , r
m
1 , p

m
1), the additional load for such messages

can be computed as (T/gcd(T, pmm) − T/pmm)Ccm
1

, i.e.,
the difference of the number of scheduled exclusive windows
and the number of used exclusive windows per matrix cycle
multiplied with the respective column length. This formula
evaluates to (24/25)Ccm

t
for messages with period 200pm1

and (8/5)Ccm
t

for messages with period 20pm1. Although
more unused data are transmitted over the network, the number
of Tx_Triggers and Rx_Triggers per node is decreased to a
very large extent compared to the case with matrix cycle
T = 500000 τbit, and all periodic messages can be scheduled
without jitter. Fig. 5 depicts the periodic part of the resulting
SM. The network utilization evaluates to U = 9.47%, and the
matrix load is 31.46%.

C. Scheduling of Sporadic Messages

After proposing different scheduling methods for pe-
riodic messages, we now consider the scheduling prob-
lem for sporadic messages that are given as a set
M = {M1,1, . . . ,M1,r1 ,M2,1, . . . ,M2,r2 , . . . ,Mg,rg

}, where
rj is the number of messages with the deadline dmj , and
g denotes the number of different deadlines. Different from
periodic messages, sporadic messages can have deadlines that
are smaller than their period. Note that if dmj is larger than the
matrix cycle T , then we reduce it to T .

The TTCAN network must be able to transmit a sporadic
message with a deadline dmj within dmj after it is generated.
As there is no information about the time instant when the
message can be generated, this can be achieved by providing an
arbitrating window for this message every transmission period
dmj . Since the number of Tx_Triggers is limited, we follow a
column-oriented approach and choose the transmission periods
that meet the deadlines of the messages according to the BC
length B. We introduce the line count Ij that represents the
largest number of BCs that fit into one transmission period. We
also introduce the column count Oj that indicates the number
of matrix columns needed to schedule one message with period
dmj in Ij matrix lines, i.e.,

Ij =
{
�dmj

B �, if dmj ≥ B
1, otherwise

Oj =
{

1, if dmj ≥ B
� B

dmj
�, otherwise . (15)

Note that we allocate the bandwidth for the sporadic mes-
sages to be transmitted with period dmj . However, the mes-
sages do not arrive with the same period. Hence, the unused
transmission instants can be utilized to accommodate messages
with larger deadlines. This idea can be illustrated as follows.
Consider a message M1,1 with the smallest deadline dm1 and
line count I1, i.e., the column count is O1. The total number of
arbitrating windows to be reserved for these messages per I1
matrix lines is I1 ·O1. However, maximally, �(I1 ·B/pm1,1)�

SCHMIDT AND SCHMIDT: SYSTEMATIC MESSAGE SCHEDULE CONSTRUCTION FOR TIME-TRIGGERED CAN 3439

occurrences of such messages with period pm1,1 are possible
during the corresponding time duration. Consequently

I1 ·O1 −
⌈
I1 ·B
pm1,1

⌉
(16)

windows are free for messages with larger deadlines, assum-
ing that deadline monotonic scheduling is applied among the
messages that are assigned to the same arbitrating windows.
Although messages with a smaller deadline always have pri-
ority over messages with a larger deadline, their period limits
their maximum number of occurrences in a given interval of
time. This guarantees the timely transmission of messages with
a larger deadline in the remaining windows. Note that deadline
monotonic scheduling can be realized by accordingly assigning
the frame identifiers.

Based on the above considerations, we propose the following
scheduling algorithm for sporadic messages:

Scheduling Algorithm for Sporadic Messages:
1) set i := 1; c := 0; y1 := 0; . . . ; yg := 0; x := 1
2) if x > g
cfinal = c
terminate
if i > g
y1 := y1 + κc,1; · · · ; yg := yg + κc,g

x := 1; i := 1;
3) compute the maximal z ≤ ri such that
�(Ii ·B/pmx,yx+1)� + · · · + �(Ii ·B/pmx,yx+κc,x

)� +
· · · + �(Ii ·B/pmi,yi+z)� ≤ OxIi.
If z = 0 and x = i
x = x+ 1

else if z �= 0 and x = i
c = c+Ox; κc,i = z

else
κc,i = z

for each j = 1, . . . , κc,i

Ox Tx_Triggers for Mi,yi+j , with Txi,yi+j
K = (c−

k, 1, 0) and k = 0, . . . , Ox − 1
i := i+ 1
go to 2).

The variables i, c, x, and yj keep track of the current
deadline, the last column introduced in the matrix, the deadline
that determines the current column count, and the index of the
last message that has been scheduled for each deadline dmj in
the previous iteration, respectively. The algorithm is initialized
with the smallest deadlines (i = x = 1) and with no columns
(c = 0, and y1 = · · · = yg = 0). In each iteration (starting from
step 2), it is checked if the current column is already filled
(i > g). If this is the case, which messages have already been
scheduled (y1 := y1 + κc,1; . . . ; yg := yG + κc,g) are stored,
and the generation of new columns is prepared (x := i := 1).
Otherwise, it is checked how many new messages (κc,i) with
deadlines dmi can be accommodated in the arbitrating win-
dows generated for a message with deadline dmx. z = 0 and
x = i represent the case where no new column can be added
yet as no new message to be scheduled has been found. A

new column is added if z �= 0 and x = i. For each message
Mi,yi+j that is added to the Ox columns under consideration,
a Tx_Trigger with RF 1 is added in each of the columns.
The algorithm terminates if all messages have been scheduled
(x > g). Together, scheduling the sporadic messages according
to the above algorithm requires cfinal columns in the SM. The
sporadic message set is schedulable if (4) for the resulting set
of Tx_Triggers evaluates to a matrix load of less than 100%,
where the respective column width is determined by the largest
message in the column.

We now apply this approach to the SAE set [18] with
31 sporadic signals with dm1 = 2500 τbit, r1 = 1, pm1,1 =
25 000 τbit, dm2 = 10 000 τbit, r2 = 30, pm2,1 = 10 000 τbit,
and pm2,k = 25 000τbit for k = 2, . . . , 31. There are two dif-
ferent deadlines; hence, g = 2 holds. As we want to con-
struct the SM for the complete SAE set, we adopt the values
B = 2500 τbit and L = 23 from Section IV-B.

In step 1 of the algorithm, I1 = �(2500/2500)� = 1, and
O1 = �(1/1)� = 1. The z = 1 message with deadline dm1 can
be fitted in the first column c = 1 as �(4 · 2500/25 000)� = 1.
Thus, κ1,1 = 1. The messages with the next larger dead-
line are considered in step 2 of the algorithm. These mes-
sages require I2 = �(10 000/2500)� = 4 rows. We now check
how many of these messages can be fitted in the same col-
umn with the message that was placed in the first step.
We find (�(4 · 2500/25 000)�) · 1 + �(4 · 2500/10 000)�) · 1 +
�(4 · 2500/25 000)�)2 ≤ 4, which means that three such mes-
sages can be placed in the same column as the first message.
One Tx_Trigger with RF 1 is placed in the first column for
each of the messages considered up to now. The remaining
27 messages with deadline dm2 can be placed in seven new
matrix columns in the last iterations of the algorithm with
their respective Tx_Triggers. In total, eight matrix columns
are reserved for the sporadic messages. The best-case net-
work utilization according to (3) (assuming message arrival
with the respective period) is U = 1%, and the matrix load is
ML = 25.92%. The SAE message set in [18] suggests that
node 6 has the largest amount of 11 Tx_Triggers for sporadic
messages. This result together with the matrix load for periodic
messages in Section III-D (ML = 24.3% + 25.9% = 50.2%)
can be compared to the matrix load derived in [15] (50.8%).
Although no jitter is introduced by our systematic approach,
a smaller matrix load is achieved.

Furthermore, the trigger count can be reduced by combining
the results of this section with Section IV-B. The overall SM for
the SAE example with BC lengthB = 2500 τbit and number of
lines L = 8 is shown in Fig. 5. All messages can be scheduled
with a matrix load of 57.38%. Note that the columns for the
periodic and sporadic messages are separated for illustration
purposes. Generally, they can be placed arbitrarily. The node
with the largest number of triggers is node 6 with 31 + 1 = 32
triggers.

D. Packing Signals in Frames

The framing overhead for CAN messages, as indicated in
(1), can be decreased by packing multiple signals in the same
frame instead of individual frames [19], [20]. The application of

3440 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

such approaches for TTCAN is very beneficial, as the resulting
smaller message set also requires a smaller number of triggers.
In this section, we discuss methods to efficiently pack signals
into frames.

We consider the set of signals S, as introduced in
Section III-A, and we call psm as the period, dss as the
deadline, and lss as the length of a signal Ss ∈ S expressed as
multiples of the bit time τbit. To associate signals to nodes, we
define the two maps tS : S → N and rS : S → 2N for the set
of signals, where tS(Ss) denotes the sender node, and rS(Ss)
denotes the set of receiver nodes of the signal Ss ∈ S.

We define the relationship between signals and messages by
the map pack: M → 2S such that the pack(Mm) represents the
set of signals packed into the messageMm ∈ M. It is required
that all signals in a message have the same transmitter node.
Based on signal maps tS and rS , we define the maps tM : M →
N and rM : M → 2N introduced in Section III-A. The trans-
mitter node for a message Mm ∈ M is tS(Ss) for any Ss ∈
pack(Mm), and the set of receiver nodes ofMm is rM(Mm) :=⋃

Ss∈pack(Mm) rS(Ss). We denote pmm = minSs∈pack(Mm) ps
as the period, dmm = minSs∈pack(Mm) ds as the deadline, and
lmm = 47 + 8�bmm/8��(34 + 8�bmm/8�/4)� as the length
of the message Mm, where bmm =

∑
Ss∈pack(Mm) ls is the

number of data bytes. Note that lmm <
∑

Ss∈pack(Mm)(47 +
8�ls/8� + �(34 + 8�ls/8�/4)�).

We first investigate a simple packing policy for periodic
signals, where only the signals with the same periods and
deadlines are packed together in a frame. The advantage of
packing signals in messages can be illustrated by means of the
number of receiver nodes |rM(Mm)| of a messageMm. If all of
the signals in this message are transmitted in individual frames,
the transmitting node requires |pack(Mm)| Tx_Triggers, and
each receiver node requires at least one Rx_Trigger. If the
signals are packed in one message Mm, the transmitter node
requires only one Tx_Trigger, and each receiver node requires
only one Rx_Trigger.

The signals with larger deadlines can be further packed
into a message with a smaller deadline after applying simple
packing. This second packing only decreases the overhead and
Tx_Trigger count; however, it does not decrease the size of
the message set or the number of Rx_Triggers any more. In
addition to that, as the minimum signal deadline determines the
deadline of the message, this modified packing increases the
number of messages with smaller deadlines.

Observing that a node n with a periodic messageMm whose
period is pmm has an exclusive window to transmit at most
every pmm, it is possible to piggyback sporadic signals that
have deadlines larger than pmm and that are also transmitted
by node n. This third packing idea further decreases the framing
overhead by using less number of frames for the entire signal
set, as well as decreasing the Tx_Trigger and Rx_Trigger
counts. In addition, it decreases the number of sporadic signals
that are transmitted in arbitrating windows. The disadvantage of
this approach is that the time for the transfer of the sporadic sig-
nal bits is allocated with the periodic signal and, thus, is wasted
if the sporadic signal is not transmitted frequently enough.
Hence, the possible increase in utilization by piggybacking
sporadic signals depends on the average period of the sporadic

signal, as well as the relation of the periods of the periodic
signal and the sporadic signal that is piggybacked on this signal.
More precisely, the closer the periods are, the less bandwidth is
wasted.

The simple packing idea has been applied to the periodic
messages of the SAE message set. After packing, five mes-
sages with period pm1, one message with period 2pm1, three
messages with period 20pm1, and three messages with period
200pm1 are scheduled. Applying the method in Section IV-B
with B = pm1 and L = 23, the messages can be scheduled in
seven columns. The network utilization is U = 10.78%, and
the matrix load isML = 27.62%. The highest trigger count for
periodic messages of node 6 is reduced to 12.

Consequently, combining the systematic methods for the
SM construction developed in this paper, the SAE benchmark
message set can be scheduled with an overall matrix load
(periodic and sporadic messages) of 53.54% and a maximal
number of 12 + 11 + 1 = 24 triggers for node 6.

Together, it can be concluded that the adjustment of the
matrix cycle in Section IV-B and the simple packing idea in
this section constitute the most favorable scheduling strategies
for periodic messages if the periods cannot be represented as a
multiple of the smallest period in the message set and a power
of 2. Employing the presented methods, a slight increase in
the network utilization allows for an effective reduction of the
trigger count without introducing jitter.

V. CONCLUSION

TTCAN has been developed as a time-triggered in-vehicle
network that is built on the existing CAN network standard and
is fully compatible with CAN nodes. It provides a feasible tran-
sition to time-triggered operation that is required for predictable
and fast network response to applications such as x-by-wire.
The message schedule for TTCAN is constructed offline and
has to guarantee the real-time schedulability of the messages
as well as compliance with the controller hardware. Network
performance metrics such as bandwidth utilization, network
load, and message jitter are also determined by this message
schedule. In this paper, we have presented a formal framework
for the TTCAN message schedule construction, including the
aforementioned performance metrics. This framework allows
for a formal analysis of the message properties and constraints
for constructing the TTCAN schedule for a given message set.
Our analysis provides guidelines for designing message sets
with desirable properties such as periods that are multiples of
a smallest message period and powers of 2 that yield efficient
schedules. In addition, we discuss what changes if the mes-
sage set does not exhibit the desired properties. Based on the
derived results, we propose a systematic approach to construct
feasible schedules that guarantee the deadlines of the messages,
respect the hardware constraints, utilize the bandwidth effi-
ciently, and introduce as small jitter as possible. Our approach
covers both periodic and sporadic messages, and we provide
a feasible message schedule for the complete SAE benchmark
message set.

Although we consider specific constraints that arise from the
TTCAN operation, the general formulation of our methodology

SCHMIDT AND SCHMIDT: SYSTEMATIC MESSAGE SCHEDULE CONSTRUCTION FOR TIME-TRIGGERED CAN 3441

is promising to be applicable to other time-triggered networks.
Our future work includes extending our approach to other time-
triggered networks such as FlexRay. Furthermore, a software
tool that automatically constructs the message schedule ac-
cording to our scheduling strategies will be developed, and
simulation studies, including best-effort messages without real-
time requirements, will be carried out to investigate the average
performance of the network.

REFERENCES

[1] A. Albert, “Comparison of event-triggered and time-triggered concepts
with regard to distributed control systems,” in Proc. Embedded World,
2004, pp. 235–252.

[2] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automo-
tive communication systems,” Proc. IEEE, vol. 93, no. 6, pp. 1204–1223,
Jun. 2005.

[3] LIN Specification Package, Sep. 2003. revision 2.0. [Online]. Available:
http://www.lin-subbus.org/

[4] Time-Triggered Protocol TTP/C, High-Level Specification Document,
Nov. 2003. protocol version 1.1. [Online]. Available: http://www.
tttech.com

[5] J. Berwanger, M. Peller, and R. Griegbach, A New High Performance Data
Bus System for Safety Related Application, 1999. [Online]. Available:
http://www.byteflight.com/specification

[6] FlexRay Communication System, Jun. 2004. protocol specification,
version 2. [Online]. Available: http://www.flexray.com

[7] CAN in Automation, May 2005. [Online]. Available: http://www.cancia.
org/can/

[8] G. Cena, A. Valenzano, and S. Vitturi, “Advances in automotive
digital communications,” Comput. Standards Interfaces, vol. 27, no. 6,
pp. 665–678, Jun. 2005.

[9] G. Leen and D. Heffernan, “TTCAN: A new time-triggered controller
area network,” Microprocess. Microsyst., vol. 26, no. 2, pp. 77–94,
Mar. 2002.

[10] TTCA, May 2005. [Online]. Available: http://www.cancia.org/can/ttcan/
[11] Road Vehicles Controller Area Network (CAN) Part 4: Time-Triggered

Communication, Std. ISO IS 11 898-4, 2004.
[12] N. Navet, Y.-Q. Song, and F. Simonot, “Worst-case deadline failure prob-

ability in real-time applications distributed over controller area network,”
J. Syst. Archit., vol. 46, no. 7, pp. 607–617, Apr. 2000.

[13] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (CAN) message response times,” Control Eng. Pract., vol. 3,
no. 8, pp. 1163–1169, Aug. 2000.

[14] J. Fonseca, F. Coutinho, and J. Barreiros, “Scheduling for a TTCAN
network with a stochastic optimization algorithm,” in Proc. Int. CAN
Autom. Conf., 2002.

[15] M. Naughton and D. Heffernan, “SMART-plan: A new message scheduler
for real-time control networks,” in Proc. IEE Irish Signals Syst. Conf.,
2005, pp. 302–307.

[16] A. Albert and R. Hugel, “Heuristic scheduling concepts for TTCAN
networks,” in Proc. Int. CAN Autom. Conf., 2005.

[17] R. Johannson, “Time and event triggered communication schedul-
ing for automotive applications,” Chalmers Lindholmen Univ. College,
Goteborg, Sweden, Tech. Rep. 17, 2004.

[18] SAE paper J2056/1 June 93, Class C Application Requirements, SAE
Handbook, vol. 2, pp. 23.366–23.272, Soc. Automotive Engineers,
Warrendale, PA, 1994.

[19] C. Norstrom, K. Sandstrom, and M. Ahlmark, “Frame packing in real-
time communication,” in Proc. 7th Int. Conf. RTCSA, 2000, pp. 399–403.

[20] R. Saket and N. Navet, “Frame packing algorithms for automotive appli-
cations,” J. Embed. Comput., vol. 2, no. 1, pp. 93–102, 2006.

Klaus Schmidt received the M.S. and Ph.D.
(mit Auszeichnung, with distinction) degrees
from the University of Erlangen-Nuremberg,
Erlangen, Germany, in 2002 and 2005, respectively,
both in electrical, electronics, and communication
engineering.

He is currently a Post-Doctoral Researcher with
the Institute of Control and Automation, Univer-
sity of Erlangen. His research interests include
controller synthesis for discrete event systems,
networked control systems, and vehicular communi-
cation networks.

Ece G. Schmidt received the B.S. degree in electri-
cal and electronics engineering from the Middle East
Technical University, Ankara, Turkey, in 1997 and
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from Carnegie Mellon University,
Pittsburgh, PA, in 2001 and 2004, respectively.

She is currently a Faculty Member with the De-
partment of Electrical and Electronics Engineering,
Middle East Technical University. Her research inter-
ests include high-speed networks, networked control
systems, and vehicular communication networks.

