
ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

6-1 
 

Chapter 6 

Petrov-Galerkin Formulations for Advection Diffusion Equation 

In this chapter we’ll demonstrate the difficulties that arise when GFEM is used for advection 

(convection) dominated problems. Several cures will be suggested such as the use of upwinding, 

artificial diffusion, Petrov-Galerkin formulations and stabilization techniques. 

6.1 GFEM for 1D Advection Diffusion Equation using Linear Elements 

 

Consider the following 1D, steady AD equation 
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where      is the scalar unknown,   is the known force function,   and   are the known constant 

velocity and diffusivity, respectively. GFEM formulation yields the following elemental stiffness 

matrix, written as the summation of elemental convection matrix    and elemental diffusion matrix 
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Using linear elements and considering constant   and  ,    and    matrices can be calculated as 
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As seen the contribution of the diffusion term to [  ] is symmetric, whereas the contribution of the 

advection term is not. 

Considering the force function   to be constant, elemental force vector becomes 

        ∫ {
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Consider a mesh of 5 equi-length linear elements as shown below 
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The assembled system of equations will be 
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Therefore the algebraic equation for an interior node   is 

 

 
            

 

  
                                                            

Dividing the equation by      we get 

 (
         

   
)   (

             

     
)                                               

6.2 Finite Difference Discretization of 1D Advection Diffusion Equation 

 

It is also possible to discretize 1D, steady AD equation using a finite difference approach. The 

following are the second order accurate central differencing based approximate first and second 

derivatives written for an interior node n of a finite difference mesh with a constant node spacing of 
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Using these in the DE we get the following discrete equation for node n  
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)                                               

which is the same as the equation obtained by GFEM. 

 

It is possible to conclude that GFEM has similarities to the use of central differencing in Finite 

Difference Method. 

6.3 Sample 1D Solutions using GFEM 

 

e=1 
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It is easier to study AD equation by introducing the following elemental Peclet number 

   
   

  
                                                                              

which is ratio of convection and diffusion. As the Peclet number gets larger the problem gets more 

convection dominated. 

We’ll solve 1D, steady AD equation with          on a mesh of 10 equi-length elements. By 

taking     , element lengths are fixed to       . Exact solution is known to be 
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)                                                            

GFEM results for different diffusivity values, therefore for different elemental Peclet numbers, are 

shown in Figure 6.1. As seen, as    increases, a sharp gradient, sometimes called a boundary layer, 

develops at the right end of the domain. For high    cases GFEM provides a wiggly solution with 

spurious node to node oscillations, failing to capture the highly nonlinear change. This oscillatory 

behavior is seen for     . 

6.4 A Special Solution with Exact Results at the Nodes 

 

The reason of unphysical oscillations seen in the previous section is the truncation errors introduced 

by the GFEM (or equally the Finite Difference method with central differencing) formulation given by 

Eqn (6.7) (or equally by Eqn (6.9)). It is possible to write Eqn (6.7) in the following way by using the 

elemental Peclet number definition 
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In this section we’ll try to find another very special discretization scheme, similar in structure to 

GFEM given above, but providing exact solution at each node of a uniform mesh of linear elements 

for any    and    values. 

Let’s say that this special scheme provides the following discrete equation for     
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Figure 6.1 GFEM solution of 1D, steady AD equation at three different Pe values. Dashed red lines 

show exact solutions. 

 

We want to find the unknown coefficients  ,   and   of this discretization so that it yields exact 

nodal values at nodes    ,   and    . Following the details from reference [1], this special 

discretization is determined as 

 

   
[                                                 ]                       

which can be arranged into the following form 
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)      ̅  (
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where   ̅  is known as artificial (numerical) diffusion (dissipation) given by 

 ̅  
    

 
               with                      

 

  
                                    

The variation of   with elemental Peclet number is shown below 
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Note that  ̅ depends only on the parameters of the DE and element length. For positive   values, 

which is the case discussed here,  ̅ is always positive. Here we assume that the actual diffusivity     is 

also positive, which is the case for real problems with a physical background. 

If we compare this “nodal-exact discretization” with the one obtained previously for GFEM, i.e. 

compare Eqns (6.7) and (6.15), we’ll notice that the advection terms containing    are the same, but 

diffusion terms containing    are different.  Artificial diffusion term is missing in GFEM. 

 

Therefore it is possible to conclude that GFEM introduces a truncation error in the form of 

diffusion operator. In other words GFEM discretization actually provides a solution for a DE with 

wrong (less than the actual) diffusivity. 

 

The idea of using artificial diffusivity that will be explained in the coming sections is based on this 

observation. But this quick solution might not be the best solution, as we will demonstrate. Finally, it 

is important to note that the nodal-exact solution of this section is valid only if  ,   and   of the AD 

equation are constants, and it is difficult to obtain such a solution for a more general case.  

6.5 Use of Upwind Differencing to Stabilize AD Solutions 

 

Discussion of the previous section is the origin of the techniques developed for improving GFEM 

solution of AD equation. The idea is to solve a DE with increased diffusion, i.e. solve a DE with an 

increased diffusivity instead of the physical diffusivity   given in the DE. This commonly used 

technique is known in the literature as “use of artificial diffusivity (dissipation)”. 

In a finite difference formulation the required artificial diffusion can be obtained by using first-order 

accurate upwind differencing for the first derivative, instead of the second order accurate central 

differencing used previously in Section 6.2. If the convection is in the positive   direction, i.e. if  

   , first derivative is discretized as   
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Using this new approximate first derivative and the previously used central differencing for the 

second derivative the following discrete equation is obtained for an internal node   of the mesh 

 (
       

  
)   (

             

     
)                                                 

which can be put into the following form 

 (
         

   
)  (  

   

 
) (

             

     
)                                      

This equation is very similar to Eqn (6.9) obtained previously in Section 6.2 using central differencing 

for both first and second derivatives. The difference is the increase of diffusion from   to   
   

 
. 

 

Therefore the following two finite difference formulations provide the same approximate solution 

1. Use upwind differencing for the first order derivative and using a diffusivity of    

2. Use central differencing for both derivatives with an increased diffusivity of   
   

 
 

 

The above formulation is known as full upwinding, which corresponds to the use of a constant 

upwinding parameter of    , instead of using a    dependent   as in Eqn (6.16). 

In Section 6.2 we showed that GFEM is numerically the same as a finite difference discretization with 

both first and second order derivatives approximated using central differences. Therefore it is 

possible to test the performance of upwind differencing using a GFEM solver, in which the effect of 

upwinding is simulated by using artificial dissipation. The results of such a test are shown in        

Figure 6.2. This figure should be compared with Figure 6.1 to see the effect of artificial diffusion. 

As demonstrated in these solutions use of upwind differencing for the convective term results in 

stable solutions (no unphysical oscillations for high    cases). But this stability comes with a price; 

these solutions turn out to be excessively dissipative (overly diffusive). This is the major concern of 

upwind differencing and it is heavily criticized in the literature for this. Since upwind differencing is 

numerically the same as using central differencing with artificial diffusion, the phrase “artificial 

diffusion” also took its share of criticisms. 
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Figure 6.2 Performance of GFEM with artificial diffusion (corresponding to full upwinding,    ) at 

three different    values. Compare the results with those of Figure 6.1. 

6.6 Upwind Type Finite Elements – A Petrov Galerkin Formulation 

 

The upwind effect used in finite difference can be achieved in finite elements by using Petrov-

Galerkin formulations (Petrov GFEM) instead of GFEM, i.e. we use weight functions that are different 

than the shape functions used for unknown approximation. 

Consider the following one dimensional mesh of equi-length linear elements. 
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Let’s concentrate on node  . Only the shown two shape functions contribute to the equation written 

for node  . If    , node     is said to be on the upstream side of node  , and node     is on 

the downstream side of node  . In Petrov GFEM, instead of selecting the weight functions to be the 

same as the shown shape functions, we distort them to the upwind side as shown below. 

 

 

 

 

 

 

This kind of distorted weight functions can be obtained by adding bubble functions (they have zero 

values on the nodes and they are nonzero on elements’ interiors, so when plotted they look like 

bubbles over the elements) to the original linear shape functions. One possibility is to use 

  
  

 

 
      

 

 
                                                                  

  
    

 

 
      

 

 
                                                                 

where   is a parameter that controls the amount of upwinding we want to use.     corresponds 

to no upwinding, which corresponds to GFEM. 

Elemental stiffness matrices using these modified weight functions are 
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Comparing these with Eqns (6.3) and (6.4) obtained using GFEM, it is seen that modifying the weight 

functions using bubble functions changes the convection matrix, but not the diffusion matrix. 

However, extra terms of the convection matrix, shown in red, are similar in structure to the diffusion 

matrix and the overall stiffness matrix can also be tought of the following way 
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In this form it is clearly seen that modifying weight functions using bubble functions to get an 

upwinding effect is numerically similar to using artificial diffusion. The amount of artificial diffusion is  

 ̅        , which is the same as the one given in Eqn (6.16). 

Test results obtained with this formulation for      with different   values are shown in Figure 

6.3. As seen, by fine tuning the upwinding parameter  , it is possible to obtain stable results. The 

optimum value of                , which is not tried here, should provide a solution that is 

exact at the mesh nodes. As seen in Figure 6.3, similar to the previous upwind solutions, these 

solutions are also excessively diffusive if the upwinding parameter   is used more than enough. 

Proper selection of   is problem and mesh dependent. 

It is now possible to make the following important conclusion, similar to the one made in Section 6.5. 

 

  The following two finite element formulations provide the same approximate solution 

1. Petrov GFEM with weight functions modified using bubble functions.  

2. GFEM with an increased diffusivity of            (or artificial diffusivity of  ̅        ) 
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Figure 6.3 Performance of Petrov GFEM with bubble functions with four different upwinding 

parameters. All results are for     . 

6.7 An Alternative Petrov Galerkin Formulation –                  

Inconsistent Streamline Upwind (SU) 

 

In the previous section a Petrov GFEM formulation is presented based on weight functions modified 

using bubble functions. It is also shown that this version of Petrov GFEM is numerically the same as 

using GFEM with artificial diffusion. Use of bubble functions is not the only way of obtaining a Petrov 

GFEM formulation. A simpler alternative is shown below. 
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As seen the weight functions are obtained by shifting the shape functions up and down according to 

the flow direction. For positive U values (convection is to the right) weight functions of the elements 

can be written as 

  
    

   
   

 

  
                                                                       

where   is a parameter that controls the amount of up and down shifts (    coresponds to GFEM). 

For linear elements, slopes of the shape functions are 
   

 

  
       and  

   
 

  
     and using these 

values in Eqn (6.26) modified weight functions become 

  
    

 

 
      

 

 
                               

  
 

 
      

 

 
                                 

Using these modified weight functions to evaluate both the convection and diffusion parts of the 

stiffness matrix is known as consistent Petrov GFEM. This is what we did in the previous section with 

bubble functions, i.e. we used modified weight functions in Eqns (6.22) and (6.23). However, it is also 

possible to use modified functions only to evaluate the convection term, which is known as 

inconsistent Petrov GFEM. This second choice provides the following results 

        ∫

[
 
 
 
   

   
  

  

   

    

  

   
  

  

   

  ]
 
 
 
 

  

 

  

     
 

 
[
   
   

]      
 

 
[
   
   

]                        

        ∫

[
 
 
 
 
   
  

 
   
  

   
  

 
   

    
   

  
 
   
  

   

  
 
   

  ]
 
 
 
 

  

 

  

     
 

  [
   
   

]                                    

which are the same as the ones obtained in the previous section using bubble functions. In Exercise 

6.1 you are asked to work on the consistent version of this formulation. 

Obtaining an upwind effect by modifying shape functions as discussed in this section is known as 

streamline upwinding (SU) in FEM. The word "streamline" corresponds to the fact that weight 

functions are modified according to the flow direction, which is dictated by the sign of   in 1D. The 

formulation described in this section will later be referred as inconsistent SU. 

6.8 Inconsistent Streamline Upwinding (SU) in 2D 

 

Two-dimensional AD equation with constant diffusivity    is given by 

 ⃗                                                                                

Streamline upwinding idea of the previous section can be extended to 2D such that weight functions 

are modified in such a way that the necessary artificial diffusion is added only in the flow direction, 
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not perpendicular to it, which is known in literature as "avoiding crosswind diffusion". In order to 

achieve this, the following artificial diffusion matrix can be used 

 ̃    ̅
    

| ⃗ |
                                                                             

where   ⃗  is the known 2D velocity vector. Value of  ̅ determines the amount of added artificial 

diffusion and its determination is not straightforward for a 2D problem. One possibility for 

quadrilateral elements is to extend what we did in 1D with Eqn (6.16) to 2D as follows 

 ̅  
 

 
( ̅        ̅      )                                                                

where  

 ̅      (   )                       ̅      (   )        

                                      

     ⃗⃗  ⃗   ⃗                     ⃗⃗⃗⃗   ⃗  

where the distances      and      and the directions    ⃗⃗  ⃗  and    ⃗⃗⃗⃗   are as shown in Figure 6.4.   and   

directions are obtained by joining the mid points of faces 2 and 4, and 1 and 3, respectively. Note 

that these directions are not the same as the coordinates used for a master element, although same 

symbols are used for both. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Details of SU formulation for a 2D quadrilateral element 
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As previously derived in Chapter 2, stiffness matrix of the 2D AD equation with constant   is  

         ∫   ⃗       

 

  

 ∫            

 

  

                                    

To obtain 2D streamline upwind (SU) formulation artificial diffusion in matrix form is added to the 

already existing diffusion 

   ∫   ⃗       

 

  

 ∫     [(  ̿   ̃)   ]   

 

  

                                        

where the 2x2 identity matrix   ̿is introduced to have a proper matrix summation. The above 

equation can arranged as 

   ∫   ⃗       

 

  

 ∫              

 

  

         ∫       ̃       

 

  

                        

 

Using the definition of  ̃ matrix given by Eqn (6.30), SU contribution part can be written as follows 

   contribution     ∫  
 ̅

| ⃗ |
  ( ⃗

    ) ( ⃗    )   

 

  

                                       

This SU contribution term can be combined with the original    term of GFEM to get 
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 ∫              

 

  

                             

 

In this final form it is possible to see that 

 

Upwinding technique described in this section is an inconsistent Petrov GFEM, which uses the 

following modified weight function only to evaluate the convection matrix 

  
 ̅

| ⃗ |
  ( ⃗

    ) 

 

It is possible to show that the weight function modification given above reduces to the form given in 

Sections 6.6 and 6.7 for the 1D case. 

GFEM contribution SU contribution 
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6.9 Generalized Consistent Petrov Galerkin Formulations                               

(Stabilized Formulations) 

 

In literature consistent Petrov Galerkin formulations that are used to obtain non-oscillatory solutions 

for convection dominated problems are known as stabilized formulations. It is possible to generalize 

many different stabilized formulations in a single compact form, as shown below. 

Consider the 2D AD equation given in Eqn (6.31). Its residual is given as 

                                                                                   

where        is the following differential operator 

       ⃗          [       ]                                                            

Consistent Petrov GFEM stabilizations can be generalized as the following elemental weak form 

 

∫ [   ⃗             ]   
 

       ∫               
 

      ∫       
 

      ∫        
 

            

 

 

where a residual based stabilization term is added to the standard GFEM formulation. If GFEM 

discretization is already providing a successful solution on a certain mesh, i.e. if the residual (error) is 

low, the effect of the stabilization term will be small.   is a user selected stabilization parameter with 

no unique definition. Different selections of       operator results in different stabilized 

formulations, two of which will be discussed in the coming sections.  

Note that unlike inconsistent SU formulation of the previous section, consistent Petrov GFEM 

stabilization given in this section not only modifies the convective part of     matrix, but also the 

diffusive part of it, as well as the    vector. 

6.9.1 Streamline Upwind Petrov Galerkin (SUPG) Stabilization 

 

One of the most popular consistent Petrov GFEM stabilization is known as Streamline Upwind Petrov 

Galerkin (SUPG) for which      and   are selected as 

   G                       ⃗                        
 ̅

| ⃗ |
                                          

where  ̅ is previously defined for 1D and 2D problems in Sections 6.4 and 6.8, respectively. 

Alternative selections of   can be found in reference [1]. 

Let’s try to obtain    and    for 1D AD equation with constant   and  . For 1D equation with 

constant   velocity SUPG formulation uses the following information 

 Stabilization term 
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Using these in Eqn (6.41) we get 
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where BI is the boundary integral term, details of which are not important for our discussion. 

Here it is important to note that the stabilization integral is directly added to the GFEM weak form 

and no integration by parts is applied to the high order derivatives in it. 

Combining the terms with the unknown   in one integral and putting the remaining terms to the 

right hand side we get 

∫[ (  
   

 

  

  
)
  

  
  

  

  

  

  
  

   

 

  

  

   

   
]    

 

  

   ∫ (  
   

 

  

  
)    

 

  

   I           

Using    ∑      
   
     and        we get the following elemental stiffness matrix and force vector 
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As mentioned previously SUPG, being a consistent Petrov GFEM, modifies both    and    of GFEM. 

If we use linear elements, i.e. linear shape functions, the term with the second derivative of the 

unknown becomes zero and the elemental stiffness matrix reduces to 

   ∫[ (   
   

 

   

  
)
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which is the same as the one obtained in Section 6.7 using an inconsistent SU approach. But note 

that this similarity is valid only for the use of linear elements. Even if we use linear elements, SUPG 

formulation will provide better results compared to inconsistent Petrov Galerkin due to the 

differences in the calculation of   . 
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6.9.2 Galerkin Least Squares (GLS) Stabilization 

 

An alternative stabilization is known as Galerkin Least Squares (GLS) formulation for which the        

operator is selected to be the same as the       operator 

GL                            ⃗                                                     

As seen the first term of   operator is the same as the one used for SUPG. The new second term has 

second order derivatives and it vanishes for linear elements. Therefore for AD equation solved with 

linear elements SUPG and GLS provides the same result. For higher order elements or for different 

DEs (like advection-diffusion-reaction equation) this will not be the case. 

6.10 Comparison of Different Formulations – 1D 
 

Consider the following 1D AD problem 

 
  

  
  

   

   
                   for       [   ] 

                      

A non-constant force function is selected on purpose so that the difference between different 

formulations can be seen clearly. The problem is solved on a mesh of 10 linear, equi-sized elements 

using two different Peclet numbers, 0.25 and 5 by taking     and changing  .  Figure 6.5 compares 

the performance of Galerkin, inconsistent SU and SUPG formulations. 

Although the optimum value of                 is used for inconsistent SU and SUPG, exact 

solution at the nodes cannot be obtained due to the force function being not constant. Note that 

optimum value of   was derived back in Section 6.4 for the constant   case. As seen from Figure 6.5 

all three formulations provide good results for low    case. However, stabilization is necessary (for 

the used 10 element mesh) to get acceptable results for high    case. It is also clear that SUPG 

performs better than inconsistent SU. Although not presented, as mentioned previously GLS 

stabilization would give the same result as SUPG for this problem, when used with linear elements. 
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Figure 6.5 Comparison of different stabilizations for 1D AD equation with non-constant force function 

using 10 equi-sized elements and optimum   value. Top: GFEM, Center: Inconsistent SU,         

Bottom: SUPG 
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6.11 Comparison of Different Formulations – 2D 
 

This is a classical test problem used to study two-dimensional AD equation. Problem domain is a unit 

square, as shown in Figure 6.6, discretized using 10x10=100 equi-sized quadrilateral elements. The 

velocity field has a constant direction with a constant magnitude of ‖ ⃗ ‖   . Diffusivity is taken as 

       making the problem convection dominated. Left and top boundaries are inflow boundaries 

with specified EBCs. Right and bottom boundaries are outflow boundaries. It is possible to use either 

zero NBCs or zero EBCs at the outflow boundaries. The former is used in the current solutions. Exact 

solution is the convection of the discontinuity at the left boundary (at point (0,0.8)) into the domain 

in the direction of the specified velocity. However, this BC jump makes the problem a difficult one for 

GFEM, which does not use any artificial dissipation. 

Figure 6.7 shows the results obtained using Galerkin and SUPG formulations. As seen SUPG provide 

results that are more diffusive and less oscillatory compared to GFEM. 

 

 

 

 

 

 

 

 

 

Figure 6.6 Definition of  roblem 2, known in the literature as “advection skew to the mesh” 
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Figure 6.7 Results of Problem 2 using (a) GFEM, NE=100, (b) SUPG, NE=100, (c) GFEM, NE=400,        

(d) SUPG, NE=400 

6.12 Relation Between Oscillatory Solutions and Mesh Quality – Adaptive Mesh 

Refinement in 1D 

 

Oscillatory behavior of GFEM for convection dominated problems is closely related to the mesh used 

for the solution. As a demonstration, Figure 6.8 compares the solution of 1D AD equation with  

           and     using GFEM with 10, 20 and 30 equi-sized elements  Given parameters 

correspond to elemental Peclet numbers of 5, 2.5 and 1.67 for meshes of 10, 20 and 30 equi-sized 

elements, respectively. As expected, refined meshes provide better results. The problem with using 

large elements is that these elements can not properly capture the boundary layer (high gradient 

region) developing at the right boundary. A fourth solution is also obtained for a mesh of 10 
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elements clustered to the right end of the domain. As seen from the results clustered mesh provides 

the best approximation, without any oscillations. Note that these are all GFEM results without any 

upwinding or artificial diffusion. 

It is clear that enough effort should be put to the generation of a high quality mesh for accurate and 

efficient numerical solution of a problem. However, for 2D and 3D problems with more complicated 

DEs it is not this easy to automatically generate meshes with fine enough elements at necessary 

regions to capture the physics correctly. In such cases, it is possible to solve the problem with an 

initial mesh and estimate the error in the approximate result (a posteriori error estimation) and 

perform solution based adaptive mesh refinement (AMR) to modify the mesh in necessary regions 

and solve the problem again. A simple AMR application in 1D is provided in the rest of this section. 

 

 

 

Figure 6.8 Comparison of GFEM results obtained with different meshes for 1D AD equation for 

(            and    . (a) 10 equi-sized elements, (b) 20 equi-sized elements, (c) 30 equi-

sized elements, (d) 10 elements clustered to the right boundary. 
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When linear elements are used for 1D problems, a piecewise linear solution is obtained. First 

derivative of the unknown is constant over each element and the second derivative is zero. An 

estimate of the second derivative at the nodes is known to serve as a good error indicator that can 

be used for AMR purposes. Consider the inner node   of the 1D mesh shown in Figure 6.9 We want 

to get an estimate for the second derivative at this node. It is surrounded by elements e and e+1. 

Points A and B are the midpoints of these elements. 

 

 

 

 

 

 
Figure 6.9 Nomenclature used for 1D AMR based on second derivative estimate 

The required second derivative can be thought as the derivative of the first derivative as given below 

   

   
|
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For the nodes at the two ends of the domain, one sided approximations can be used for the second 

derivative. After estimating the second derivative at each node of the domain, elements that have 

nodes with second derivatives exceeding a user defined limiting value can be refined by diving them 

into two. 

Figure 6.10 shows the results of this idea applied to the GFEM solution of AD problem studied 

previously in this section. The solution is started with 10 linear elements and a limiting second 

derivative value of 20 is used to determine the elements that need to be refined. After the initial 

solution 8 elements are selected to be refined and the resulting mesh has 18 elements. After the 

second refinement 6 more elements close to the right boundary are refined, resulting in a mesh of 24 

elements. Finally after the third refinement, a mesh of 28 elements is obtained, which provides a 

solution without oscillations. 

In this AMR solution only mesh refinement is implemented. To increase the efficiency of the solution, 

mesh coarsening can also be applied. For example after the first refinement, solution close to the left 

boundary is almost linear and very accurate. It is possible to reduce the number of elements in this 

region by combining two neighboring elements into a single element. Although AMR makes the code 

intelligent and powerful, it also brings complications to coding. 

Keeping element order constant and increasing/decreasing the number of elements, as done in the 

sample solution explained above, is known as h-refinement. It is also possible to do p-refinement, in 

which element number is kept the same but order of the elements are increased/decreased as 

necessary. When these two strategies are used together it is known as hp-refinement. A final 

refinement alternative, known as r-refinement keeps both element number and their order the same 

e e+1   

A B 
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but relocates the nodes and elements of the mesh so that finer mesh is obtained in high gradient 

regions. 

AMR can also be used for 2D problems, however, dividing large elements into smaller elements or 

merging small elements into larger ones is not as easy as 1D. 

 

 

Figure 6.10 Adaptive Mesh Refinement (AMR) applied to GFEM solution of 1D AD equation. (a) Initial 

mesh with NE=1, (b) 1st refinement, NE=18, (c) 2nd refinement, NE=24, (d) 3rd refinement, NE=28 

6.13 Time Dependent Pure Advection in 1D 

 

Consider the following unsteady, 1D pure advection equation 

  

  
  

  

  
               for         [     ]           [   ] 

         

       {
if       

      (         )

   
else  

  



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

6-23 
 

Initial condition given at      is a smooth cosine hill with height of 1 centered at point      . This 

hill will travel in the positive   direction with a velocity of    . Since this is a pure advection 

problem, the shape of the hill is expected to be the same as it travels. The equation is hyperbolic in 

nature and only one BC at the inflow (left end of the domain) is specified. In the 1D unsteady code 

zero N C can be provided at the right boundary since it corresponds to a “do nothing”  C. 

Forward differencing (FD), backward differencing (BD) and Crank-Nicolson (CN) with 100 linear 

elements are used for the solution. Figure 6.11 provides the results at      for FE scheme used with 

different time steps. Being an explicit scheme FD has time step restrictions to get stable solutions. 

Only for small enough time steps the solution is satisfactory. When time step is increased, unphysical 

waves develop behind the main traveling hill and they grow in magnitude. These waves are an 

indication of dispersion errors of the approximation. 

Figure 6.12 provides the results for BD scheme. This scheme is implicit and it is unconditionally stable 

for any time step value. As seen even for very large time steps the solution is free of oscillations, i.e. 

it is bounded. However, for large time steps the solution is too diffusive, as seen by the drop of the 

hill’s height.  This drop is an indication of diffusion errors. 

Finally Figure 6.13 provides the results for CN scheme. Unlike the first two, which are first order 

accurate in time, CN is second order accurate. For small time steps its diffusive error is less than BD 

scheme. However it is not as “oscillation-free” as the BD scheme with large time steps. 

Note that the cosine hill travels a distance of 1 unit with a unit velocity, i.e. total integration time is 

also 1 unit. For a time step value of 0.1 the hill travels a distance of 0.1 units. For a mesh of 100 

elements, as used in all these simulations, one element length is 0.014 units. Therefore with t=0.1, 

the hill try to pass over about 7 elements in one time step, which is just too much for certain 

schemes. 

The above calculation is usually presented in terms of the nondimensional Courant number defined 

as 

  
   

  
                                                                               

Courant number is important in studying stability characteristics of time integration schemes. For 

   ,        and          Courant number turns out to be       , which exceeds the 

Courant Friedrichs Lewy (CFL) stability criteria of certain schemes. CFL criterion provides the 

maximum time step that can be used to get stable solutions for a given element length. If we 

decrease the element length to get more accurate solutions, we should also decrease the time step 

so that the CFL criterion is not violated. 

We have to be careful when deriving conclusions based on the solutions of a single problem. For 

example this problem is purely advective, i.e. there is no physical diffusion. Real life problems usually 

include some amount of physical diffusion which will stabilize the solutions to a certain degree. 

Shape of the initial cosine hill is also important. For example if we try to work with a square wave 

with sharp corners, the solutions will be much more oscillatory. 



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

6-24 
 

Although not presented here, it is possible to use stabilized formulations such as SUPG or GLS for 

time dependent problems. Taylor-Galerkin Method is another popular stabilization technique used to 

solve unsteady problems. You can find its details in reference [1] and in several articles. 

Adaptive Mesh Refinement (AMR) discussed in the previous section can be used for time dependent 

problems, too. Actually since the solution and its gradients are changing in time, solution based mesh 

adaptation becomes a necessity for designing efficient solvers for unsteady problems. 

 

 

Figure 6.11 Solution of Problem 1 at  t = 1 using FD scheme with different time steps.                          

(a) t = 0.0001, (b) t = 0.005, (c) t = 0.001 
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Figure 6.12 Solution of Problem 1 at  t = 1 using BD scheme with different time steps.                         

(a) t = 0.0001, (b) t = 0.001, (c) t = 0.01, (d) t = 0.1 
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Figure 6.13 Solution at t = 1 using CN scheme with different time steps.                                                   

(a) t = 0.0001,    (b) t = 0.001,    (c) t = 0.01,    (d) t = 0.1 

 

6.14 Time Dependent Pure Advection in 2D 

 

2D version of the previous problem, known in the literature as “rotating cosine hill” is sketched in 

Figure 6.14. Governing DE and supporting boundary and initial conditions are 

  

  
  ⃗                    [    ]  [    ]             [    ] 

           at all boundaries 

         { 
 

 
[           ]            if          

 else                
}         where         √            

Problem domain is a 2x2 square. Initially the unknown scalar   is specified to be zero everywhere 

except the cosine hill centered at point A with a height of 1 and a diameter of 0.5. A velocity field is 

specified as   ⃗          , which is used to rotate the cosine hill around the origin in CCW direction. 

EBC of value zero is given on all boundaries. Similar to the previous problem, this is also a pure 
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advection case and the exact solution should have the hill rotating around the origin, without 

changing its shape. Unfortunately due to diffusive errors of a numerical solution, the hill will diffuse 

out as it rotates, which will be seen as a decrease in its height and an increase in its radius. Also due 

to the dispersive errors, there will be trailing waves behind the rotating hill. The simulations are run 

for a total time of   , which corresponds to one revolution of the hill. 

Figures 6.15, 6.16 and 6.17 show the results obtained using 100, 400 and 900 quadrilateral elements. 

For each case Backward Difference (BD) and Crank-Nicolson (CN) schemes are tested with two 

different time steps. Considering its unstable charateristics, Forward Difference (FD) scheme is not 

used for this problem. 

As seen from Figure 6.15, a mesh of 100 elements provides totally unacceptable results. Altough not 

reported here, even smaller time steps are tried without any success. This mesh resolution is simply 

not enough to capture the time dependent physics of this advection problem. 

With 400 elements (Figure 6.16), it is possible to clearly identify the roatting hill. Similar to the 

previous 1D problem, BD scheme is more diffusive than CN.  As expected, using a smaller time step 

ends up with better results. For 400 elements with CN scheme and a time step value of /1000, 

height of the hill after one rotation reduces to 0.75 (it should be 1 for the exact solution) and trailing 

waves have a maximum undershoot of 0.17. 

With 900 elements (Figure 6.17), BD is still too diffusive for the larger time step and the result is 

unacceptable. When the time step is reduced BD provides acceptable results. Best reult is obtained 

using CN with the smaller time step, for which height of the hill after one rotation reduces to 0.92 

and trailing waves have a maximum undershoot of 0.08. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14  Definition of the "Rotating Cosine Hill" problem 

 

View BB  at      
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Figure 6.15  Results after one rotation using 100 quadrilateral elements 

(a) BD, t = /100,    (b) CN, t = /100,    (c) BD, t = /1000,    (d) CN, t = /1000 

 

 

 

Figure 6.16  Results after one rotation using 400 quadrilateral elements 

(a) BD, t = /100,    (b) CN, t = /100,    (c) BD, t = /1000,    (d) CN, t = /1000 
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Figure 6.17  Results after one rotation using 900 quadrilateral elements 

(a) BD, t = /100,    (b) CN, t = /100,    (c) BD, t = /1000,    (d) CN, t = /1000 

 

Both diffusive and dispersvive errors accumulate as the time elapses and we expect to see worse 

results if the hill is allowed to make more rotations. For example if the 900 element case with CN 

scheme and t = /1000 is run for 3 rotations, maximum height of the hill reduces to 0.80 and the 

trailing waves provide a maximum undershoot of 0.17. Compare these numbers with the ones given 

in the previous paragraph. 

6.15 Exercises 

 

E-6.1. What happens if the modified shape functions of Section 6.7 are not only used in integrating 

the convective term, but also the diffusive term? Will the discontinuity of the modified shape 

functions possess any difficulty? 

E-6.2: Consider a velocity field purely in the   direction, i.e.  ⃗           . For a square quadrilateral 

element with its edges aligned nicely with   and   axes, show that the artificial diffusivity matrix 

given in Eqn (6.32) becomes 

 ̃   ̅ [
  
  

] 

Note that only one component of the artificial diffusion matrix is nonzero. This is how crosswind 

diffusion is eliminated in streamline upwinding. 
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E-6.3: For the velocity field given in the previous exercise determine the artificial diffusion matrix, but 

this time consider that the square element is rotated CCW by 45o so that its edges are no longer 

aligned with the   and   axes. 

E-6.4: As mentioned in Section 6.13 GLS and SUPG type stabilization techniques can be used for time 

dependent problems too. Modify the unsteady 1D code to include these stabilizations and solve the 

problem of Section 6.13. Compare the stabilized results with the provided ones. 

E-6.5: Repeat exercise E-6.4 for 2D problems. Modify 2D unsteady code to include stabilization terms 

and solve the rotating cosine hill problem of Section 6.13. Compare the stabilized results with the 

provided ones. 

E-6.6: 2D unsteady problems can be costly in terms of computation time. Measure the computation 

time of rotating cosine hill problem of Section 6.14 on your own computer for different meshes. Use 

MATLA ’s profiler to determine the most time consuming parts of the code.  uggest ideas to reduce 

run time. Implement your ideas and present the improvements. 
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