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Chapter 3 

Formulation of FEM for Two-Dimensional Problems 
 

3.1 Two-Dimensional FEM Formulation 

 

Many details of 1D and 2D formulations are the same. To demonstrate how a 2D formulation works 

we’ll use the following steady, AD equation 

 ⃗                        in                                                                 

where  ⃗  is the known velocity field,   is the known and constant conductivity,   is the known force 

function and   is the scalar unknown. Weighted residual statement of this DE is 

∫(   ⃗             )   

 

 

                                                         

We can apply the divergence theorem (similar to integration by parts we used in 1D) to the second 
term, which has the second derivative, as follows  

∫         

 

 

 ∫          

 

 

 ∫     ⃗        

 

 

                                       

Substituting this into the weighted residual statement we obtain the following weak form 

∫(   ⃗             )   

 

 

 ∫     

 

 

   ∫     ⃗        

 

 

                              

By looking at the boundary term, PV of the problem is   and SV is     ⃗     , where  ⃗  is the unit 
outward normal of the boundary of the problem domain. 

       ⃗       (  

  

  
   

  

  
)                                                  

 Now substituting the following approximate solution into the weak form 

          ∑          

  

   

                                                                

 

and selecting the weight function to be the     shape function, i.e.           we get the following 

    linear algebraic equation for NN many nodal unknowns. 
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This equation is valid for           . All NN equations can be represented in the following 
compact form 

[ ]{ }  { }  { }                                                                      

 

where { } is the unknown vector with NN entries. [ ] is the stiffness matrix of size NNxNN with 
entries given below 

    ∫[   (  
   

  
   

   

  
)   (

   

  

   

  
 

   

  

   

  
)]     

 

 

                               

 

and { } and { } are the force vector and boundary integral vector, respectively. 

Similar to the 1D case, in a computer code [ ] { } and { } are computed as a summation/assembly 
of NE integrals, each taken over a separate element. 

In order to be able to take the integrals numerically using GQ integration we need to introduce 2D 
master elements and be able to work with master element coordinates. 

3.2 Two Dimensional Master Elements and Shape Functions 

 

In 2D, triangular and quadrilateral elements are the most commonly used ones. Figure 3.1 shows the 
bilinear (4 node) quadrilateral master element. Master element coordinates,   and  , vary between   
-1 and 1. Local node numbering starts from the lower left corner and goes CCW. Shape functions can 
be determined either by considering the general form and using the Kronecker-delta property or 
simply by combining proper linear, 1D shape functions. 

 

 

 

 

 

 

 

Figure 3.1 Bilinear (4 node) quadrilateral master element and shape functions 

 

General form :     𝑆  𝐴  𝐵𝜉  𝐶𝜂  𝐷𝜉𝜂 

𝑆  
 

 
   𝜉    𝜂                 𝑆  

 

 
   𝜉    𝜂  

𝑆3  
 

 
   𝜉    𝜂                 𝑆4  

 

 
   𝜉    𝜂  

 

2 

3 

𝜉 

1 

4 

𝜂 

(-1,-1) 

(1,1) 



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

3-3 
 

Figure 4.2 shows the bilinear (3 node) triangular master element. Note that master element 

coordinates do not vary between -1 and 1 for a triangular element and we need to be aware of this 

during GQ integration. 

 

 

 

 

 

 

Figure 3.2 Bilinear (3 node) triangular master element and shape functions 

 

It is possible to construct higher order 2D elements such as 9 node quadrilateral or 6 node triangular 

elements, too. 

3.3 Gauss Quadrature Integration in 2D 

 

GQ points and weights for quadrilateral elements are directly related to the ones used for 1D GQ. We 

simply think about two integrals, one in   and the other in   direction and combine two 1D GQ 

integrations. Figure 3.3 shows how a sample 4 point GQ on a 2D quadrilateral element works. Table 

3.1 provides GQ points and weights for NGP = 1, 4 and 9 to be used for quadrilateral elements.  

 

 

 

 

 

 

 

 

 

Figure 3.3 GQ integration points and weights on 2D quadrilateral master element for NGP = 4. White 
circles are the GQ points. 

2 1 

3 

𝜉 

𝜂 

(1,0) 

(0,1) 
General form :    𝑆  𝐴  𝐵𝜉  𝐶𝜂 

𝑆    𝜉  𝜂 

𝑆  𝜉 

𝑆3  𝜂 

 

GQ point 1:      𝜉    /      𝜂    /        𝑊    

GQ point 2:      𝜉      /      𝜂    /        𝑊    

GQ point 3:      𝜉    /      𝜂      /        𝑊    

GQ point 4:      𝜉      /      𝜂      /        𝑊    

2 

3 

𝜉 

1 

4 

𝜂 

𝜉 

  /    /   

𝜂 

  /   

 /   



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

3-4 
 

For a triangular element, master element coordinates do not vary between -1 and 1, and we need to 
use a completely different GQ table, specifically designed for triangular elements. Table 3.2 can be 
used for GQ integration of triangular elements. 

 

Table 3.1 Gauss Quadrature points and weights for 2D quadrilateral elements 

NGP          

1 0 0 2 

4 

 √ /   √ /  1 

√ /   √ /  1 

 √ /  √ /  1 

√ /  √ /  1 

9 

 √ /   √ /  25/81 

0  √ /  40/81 

√ /   √ /  25/81 

 √ /  0 40/81 

0 0 64/81 

√ /  0 40/81 

 √ /  √ /  25/81 

0 √ /  40/81 

√ /  √ /  25/81 

 

Table 3.2 Gauss Quadrature points and weights for 2D triangular elements 

NGP          

1 1/3 1/3 1/2 

3 

0.5 0 1/6 

0 0.5 1/6 

0.5 0.5 1/6 

4 

1/3 1/3 -27/96 

0.6 0.2 25/96 

0.2 0.6 25/96 

0.2 0.2 25/96 
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3.4 Coordinate Transformation and Jacobian Matrix in 2D 

 

Remember that for 1D problems the relation between the global   coordinate and the master 

element coordinate   is 

  
  

 
  

  
    

 

 
                                                                    

which is used to obtain the following Jacobian formula 

   
  

  
 

  

 
                                                                           

Similar relations are necessary in 2D so that the derivatives of shape functions with respect to   and 

  can be expressed as derivatives with respect to   and  . 

In 2D ( ,  ) coordinates can be written in terms of (   ) coordinates by using the previously defined 

2D shape functions as follows 

       ∑   
 

   

   

                                     ∑   
 

   

   

                                      

where NEN is the node number of an element (equal to 4 and 3 for bilinear quadrilateral and bilinear 

triangular elements, respectively) and   
  and   

  are the known nodal coordinates of the element. 

Actually these equations are not different than what we previously used in 1D, i.e. equation (3.10) is 

a direct outcome of using equation (3.12) in 1D. Using the same shape functions for both unknown 

approximation and coordinate transformation is known as iso-parametric formulation. It is possible 

to use different order shape functions for unknown approximation and coordinate transformation, 

known as sub-parametric or super-parametric formulation. 

Using equation (3.12) we are now able to express   and   derivatives of the     shape function in 

terms of derivatives with respect to   and   as follows 

   

  
 

   

  

  

  
 

   

  

  

  
                      

   

  
 

   

  

  

  
 

   

  

  

  
                                  

In a more compact form these equations can be written as 

{
 

 
   

  
   

  }
 

 

 

[
 
 
 
 
  

  

  

  
  

  

  

  ]
 
 
 
 

{
 

 
   

  
   

  }
 

 
                                                             

where the 2x2 matrix is known as the Jacobian matrix. Its entries can be calculated using equation 

(3.12) as shown below for a 4 node element (NEN=4) 
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 4
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 ]
 
 
 

                                     

where the last matrix has the   and   coordinates of the four corners of element  . In a computer 

code Jacobian is calculated in exactly this way. Note that in general each element of a FE mesh has a 

different Jacobian matrix and entries of Jacobian matrices are not constants but functions of (   ).  

Remember that in the integrals of elemental stiffness matrix and elemental force vector we have 

shape function derivatives with respect to   and   that need to be converted to derivatives wrt   and 

 . In other words we need the inverse of the Jacobian matrix as shown below 

{
 

 
   

  
   

  }
 

 
 

[
 
 
 
  

  

  

  
  

  

  

  ]
 
 
 

{
 

 
   

  
   

  }
 

 

  [  ]  

{
 

 
   

  
   

  }
 

 

                                               

Jacobian matrix is 2x2 and its inverse can be evaluated simply as follows 

   [
  
  

]                 
 

|  |
[
   
   

]           where      |  |                         

Now we can write the elemental stiffness matrix integral given in equation (3.9) in terms of   and   

as follows 

             
  ∫ {   [   ( 

   
  

   

  
     

  

   

  
)    (  

  
  

   

  
     

  

   

  
)]

 

  

   [(  
  

  

   

  
   

  
  

   

  
) (  

  
  

   

  
   

  
  

   

  
)

 (  
  

  

   

  
   

  
  

   

  
)(  

  
  

   

  
   

  
  

   

  
)]}   |  |                            

 

This last integral is ready to be evaluated in a computer code using GQ integration. Determinant of 

the Jacobian that appears at the end of the integral is coming from the following relation  

            |  |                                                                    

3.5 Assembly in 2D 

 

Assembly rule given in equation (2.27) can directly be used in 2D. Consider the 4 element mesh with 

8 nodes shown in Figure 3.4. Elemental systems for the quadrilateral and triangular elements will be 

4x4 and 3x3, respectively. Four elemental systems will be assembled into an 8x8 global system . 
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Figure 3.4 Element and global and local node numbering for a sample 2D mesh 

To perform the assembly we need to write the local-to-global node mapping matrix. To do this first 

we need to select a global node numbering and then a local node numbering for each element, 

which can be as the ones shown in Figure 3.4. With the selected global and local node numberings 

local-to-global node mapping matrix can be written as follows 

     [

    
    
    
    

]                                                                 

where the entry of the last row does not exist since the third element has only three nodes. Using 

the assembly rule and this      matrix, the following global stiffness matrix 

  

[
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and the following global force vector and boundary integral vector can be obtained 
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The assembled 8x8 global system can also be written as 

[
 
 
 
 
 
 
 
 
        3   4             

       

 3   3 

 4   4 

       

       

       

        3   4             ]
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  }
 
 
 

 
 
 

                         

3.6 Evaluation of Boundary Integrals in 2D 

 

Application of EBCs in 2D is the same as 1D. We can again apply reduction to the global system and 

delete the necessary rows/columns of it and modify the right hand side of the remaining equations 

accordingly. However, NBCs and MBCs need more detailed calculations, because in 2D the problem 

boundary is not composed of just two nodes, but line segments, and the boundary integrals require 

the calculation of line integrals. 

As seen in equation (3.7), for the     equation of the global system, entry of the boundary integral 

vector { } is given as 

   ∫  

 

 

                                                                              

This integral should be evaluated only on the boundaries of the problem domain. For the problem 

shown in Figure 3.6 problem boundary consists of 7 element faces. 

 

 

 

 

 

 

 

 

 

Figure 3.6 BCs for the sample 2D mesh. Boundary faces are shown as thick lines  
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3 MBC :   𝑆𝑉  𝛼𝑇  𝛽 

EBC :   𝑇   𝑇  

NBC :   𝑆𝑉  𝑄  

NBC :   𝑆𝑉  𝑄  

EBC :   𝑇   𝑇  
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Consider the BCs shown in Figure 3.6. There are 2 EBCs, 2 NBCs and 1 MBC. The following important 

observations can be made about the { } vector of equation (3.24) 

 Similar to 1D, entry of the { } vector corresponding to an internal node (a node that is not 

on the problem boundary) is zero. For the sample 2D problem we are studying, 5th global 

node (global node numbers are given in Figure 3.4) is an internal node and     . 

 If an EBC is specified at a boundary node, the corresponding boundary integral entry is not 

necessary for the solution. As seen in Figure 3.6, EBCs are specified at global nodes 1, 2, 3, 4 

and 7. Therefore we do not need to calculate        3  4 and   . 

 In short, we only need to calculate    and   . 

Before calculating    and    let’s first select a face numbering notation. As shown in Figure 3.7, the 

face between local nodes 1 and 2 of an element will be the 1st face and the other faces will be 

numbered consecutively in a counter clockwise order. According to this notation, boundary faces of 

the problem shown in Figure 3.6 are the 1st and 4th faces of element 1, 1st and 2nd faces of element 2, 

3rd and 4th faces of element 3 and 2nd face of element 4. 

 

 

 

 

 

Figure 3.7 Face numbering notation for 2D elements  

Now we are ready to calculate    and   . Similar to [ ] and { } calculations, we can calculate the 

{ } vector element by element, followed by an assembly. Since the 1st element of Figure 3.6 has no 

NBC or MBC faces, we do not need to perform any boundary integral calculation for it. Next comes 

the 2nd element, shown below. 

 

 

 

 

Figure 3.8 Second element of sample 2D mesh. Faces of this element located at the problem 

boundary are shown as thick lines. One of these faces has NBC. 

 

For this 2nd element the elemental boundary integral vector is 

Face 1 
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NBC :   𝑆𝑉  𝑄  
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{  }  

{
 
 

 
   

 

  
 

 3
 

 4
 
}
 
 

 
 

                                                                         

We do not need to calculate   
 ,   

  or  4
 , because they will be assembled into   ,  3 and    

locations of the global { } vector, respectively and we already know that these are not necessary in 

the FE solution. Therefore we only need to calculate  3
 . Using the elemental version of equation 

(3.24)  3
  can be calculated as 

 3
  ∫  3       

 

  
 

 ∫  3      
 

  
 

                                                       

where  3 is the third local shape function of the second element and   
  is the part of the boundary 

of element 2 that is located at the problem boundary. Only 2 of the four faces are located on the 

problem’s boundary and therefore it is possible to write the above integral as the summation of 2 

line integrals as follows 

 3
       ∫  3      

 

 a e 1⏟        
    

     ∫  3      
 

 a e 2

                                               

Due to the Kronecker-delta property of the shape functions,  3 is equal to zero on the first face (See 

Figure 3.1). Therefore  3
  is equal to 

 3
  ∫  3      

 

 a e 2

                                                                  

In order to evaluate this integral we need to know how    changes over the 2nd face of element 2. 

 or simpli ity let’s  onsider    to be constant, which is actually the most common case.  3
  becomes 

 3
    ∫  3  

 

 a e 2

                                                                  

***REPAIRED*** 

 3 is a 2D shape function that varies with both   and   (or   and  ). On face 2 it varies linearly as 

shown below 

 

 

 

 

 

Figure 3.9 Variation of  3 on the second face of element 2. Local node numbers are also shown 

2 

3 

1 

𝑆3 
Face 2 of 

element 2 
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Using the shown linear variation of  3 over face 2, the integral of equation (3.29) can be evaluated as  

  
 /   and  3

  becomes 

 3
  

    
 

 
                                                                            

where   
  is the length of the second face of the second element. Therefore the elemental boundary 

integral vector for element 2 is 

{  }  

{
 
 

 
   

 

  
 

    
  ⁄

 4
 

}
 
 

 
 

                                                                         

Now we can do similar calculations for the third element to get { 3}. Similar to the second element, 

third element also has a single NBC face. Again considering that the SV specified on that face is 

constant, i.e.     is constant, we do not need to repeat the calculations. The following { 3} can be 

written automatically 

{ 3}  

{
 
 

 
   

3

  
3

   3
3  ⁄

 4
3

}
 
 

 
 

                                                                         

We did not calculate   
3,   

3 or  4
3, because they will be assembled into  4,    and    locations of 

the global { } vector, respectively and we know that these values are not necessary in the FE 

solution. 

Finally { 4} needs to be calculated and for this the mixed BC given on face 2 of element 4, shown 

below, is to be considered. 

 

 

 

 

Figure 3.10 Fourth element of sample 2D mesh. Only face 2 of this element is located at the problem 

boundary and MBC is specified there. 

For element 4 we do not need to evaluate   
4 because it will assemble into global   , which is not 

necessary for the FE solution. But we need to evaluate   
4 and  3

4. Since only the second face of 

element 4 is located at the problem boundary these can be evaluated as 

1 2 

3 

e=4 

MBC :   𝑆𝑉  𝛼𝑇  𝛽 
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4  ∫           

 

 a e 2

     ∫             
 

 a e 2 

 3
4  ∫  3        

 

 a e 2

     ∫  3          
 

 a e 2

                                            

Let’s  onsider   
4 first. To calculate it we need to know how    varies on face 2. We discussed a 

similar case before and we know that it varies linearly on face 2, as shown below. We also need to 

know how   varies on face 2. For a 3-node triangular element with 2-node faces,   also varies 

linearly on the faces as shown below 

 

 

 

 

 

 

 

 

Figure 3.11 Variation of    and   on the 2nd face of element 4. Local node numbers are also shown. 

Using the shown linear variations of    and   over the 2nd face of element 4, the integral for   
4 

shown in equation (3.33) can be evaluated as  

  
4  

  
4

 
                                                                        

Similarly the integral for  3
4 given in equation (3.33) can be evaluated as  

 3
4  

  
4

 
                                                                        

And the elemental boundary integral vector of element 4 becomes 

{ 4}  

{
 
 

 
 

  
4

  
4

 
             

  
4

 
             }

 
 

 
 

                                                    

Now we can assemble all {  }’s to get the following global { } vector 
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{ }  
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3

 
 

  
4
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To summarize, natural and mixed BCs are treated as follows 

 Boundary integrals should only be calculated for the faces where a NBC or MBC is specified, 

not on internal faces or faces where EBC is specified. 

 On a 2-node face, if a NBC is specified as a constant value, we can directly use the result 

given by equation (3.30). We do not need to repeat the calculations. 

 On a 2-node face, if a MBC is specified with constant   and   values, we can directly use the 

results given by equations (3.33) and (3.34). We do not need to repeat the calculations. 

 If the specified SV as a NBC or   and   values specified as a MBC are not constant, then the 

boundary integrals need to be evaluated again, but we’ll NOT consider these cases in this 

course. 

 If boundary integrals are taken over a face with 3 or more nodes, then the results obtained in 

this section cannot be used, but the integrals need to be evaluated again. 

3.7 First 2D Solution 

Hot combustion gases of a furnace are flowing through a chimney made of concrete                        

(       /    . The flow section of the chimney is              , and the thickness of the wall 

is      . The average temperature of the hot gases in the chimney is          , and the average 

convection heat transfer coefficient inside the chimney is         /     . The chimney is losing 

heat from its outer surface to the ambient air at           by convection with a heat transfer 

coefficient of          /    . Taking full advantage of symmetry, determine the temperature 

distribution inside the chimney and the rate of heat loss for a 1 m long section of the chimney. 

This problem is taken from reference [1]. 

 

 

 

 

 

 

 𝑖𝑛,  𝑇𝑖𝑛  𝑜𝑢𝑡,  𝑇𝑜𝑢𝑡 

30 cm x 30 cm 

10 cm x 10 cm 
𝑘 
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Heat transfer on the  himney is through  ondu tion, whi h is governed by the following Lapla e’s 

equation 

            

This equation is a simplified form of the AD equation studied at the beginning of this chapter. 

Although the thermal conductivity is constant, we do not cancel it out, but keep it inside the 

derivatives so that it will also appear in the boundary integral, resulting in a more physical secondary 

variable. Multiplying the residual of the above equation with a weight function, integrating it over 

the problem boundary and applying the divergence theorem we get the following weak form 

∫             

 

 

 ∫   ⃗       ⏟      
  

   

 

 

 

where the secondary variable is 

     ⃗         
  

  
    

  

  
   

which is the heat flux passing through the boundary. It is positive if heat is coming into the problem 

domain and negative if heat is going out of the domain. Weak form takes the following form for the 

2D problem we are studying in the    plane 

∫ (
  

  
 
  

  
 

  

  
 
  

  
)  

 

 

 ∫      
 

 

   

which yields the following elemental stiffness matrix, which is a simplified version of equation (3.9) 

and force vector 

   
  ∫ (

   

  

   

  
 

   

  

   

  
)       

 

  

                       
                                         

   
  integral can be written in terms of the master element coordinates   and   as follows, which is a 

simplified version of equation (3.18)  

   
  ∫   [(   

  

   

  
    

  

   

  
)(   

  

   

  
    

  

   

  
)

 

  

 (   
  

   

  
    

  

   

  
)(   

  

   

  
    

  

   

  
)]  |  |      

Now we can discretize the problem domain into elements. By considering existing symmetry planes, 
it is possible to study only a small portion of the problem domain as shown below. The symmetry 
planes act as insulated boundaries. The FE mesh shown below has 3 bilinear quadrilateral and 2 
bilinear triangular elements. There are a total of 9 nodes. BCs are also shown below. There are 2 
NBCs, 2 MBCs and no EBC. Note that NBCs are special in the sense that the SV is specified as zero. 
These are “do nothing type” BCs, because they do not modify the global system at all. 
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To evaluate [  ] matrices we first need to evaluate Jacobian matrices using equation (3.15). And for 

this we need to select local node numbering for each element. Our selection is seen below. As a rule 

all local node numberings are CCW, but the selection of the first node on an element is arbitrary. 

 

 

 

 

 

Now the Jacobians and [  ] ‘s can be calculated. 

Element 1: 

This is a quadrilateral element with shape functions given in Figure 3.1. Using the derivatives of these 

shape functions and the coordinates of four corners in equation (3.15) we get the following Jacobian 

matrix 

[  ]  [
 

 

 
     

 

 
     

 

 
      

 

 
     

 
 

 
      

 

 
     

 

 
     

 

 
     

] [

  
     
        
     

]       [
      

      
] 

which is not a function of   or   and has two zero entries. This is due to the shape of the element, 

which is a square, being the same as that of the master element. Also the local numbering we used 

affected this result. Inverse of the Jacobian and its determinant are 

[  ]   [
   
   

]              |  |          4 

e=1 e=2 
e=3 

e=4 
e=5 

1 2 3 4 

5 
6 7 

8 9 

𝑥 

𝑦 

SV = 0 

SV = 0 

𝑘
𝑑𝑇

𝑑𝑦
   𝑖𝑛 𝑇  𝑇𝑖𝑛  

 𝑘
𝑑𝑇

𝑑𝑦
   𝑜𝑢𝑡 𝑇  𝑇𝑜𝑢𝑡  

e=1 e=2 e=3 

e=4 e=

1 1 1 

1 1 

2 2 

2 2 

4 3 

4 3 4 3 

2 

3 

3 



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

3-16 
 

It’s worth to note that the determinant of the Jacobian is equal to the ratio of the area of the actual 

element (0.0025 for e=1) to that of the master element (4 for a quadrilateral element). This is the 

 ase for all 2D elements. A tually in 1D Ja obian was half of the element’s a tual length, whi h is 

nothing but the ratio of the length of the actual element to that of the master element. Similarly, in 

3D, determinant of the Jacobian corresponds to the volume ratio of an actual element and the 3D 

master element. 

Now we can evaluate the entries of the elemental stiffness matrix by using different values for   and 

  indices in the    
  equation. 

   
  ∫ ∫     {[  ( 

 

 
     )   ] [  ( 
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     )]}         4                 
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  ∫ ∫     {[  ( 
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     )]}          4                 

  4
  ∫ ∫     {[  ( 

 

 
     )   ] [  ( 

 

 
     )   ]

 

  

 

  

 [    ( 
 

 
     )] [    (

 

 
     )]}          4                 

Skipping the details for the rest of the entries we get 

[  ]  [

                           
                           
                           
                           

] 

which is a symmetric matrix. This is because Laplace’s equation with constant   yields symmetric 

stiffness matrices, irrespective of the details of the element. To see this better, have a look at 

equation ( ) of page 3-15 and notice that nothing changes when we interchange   and  , i.e. 

   
     

  . 

Element 2 and 4: 

Shape, size, orientation and local node numbering of the 2nd and 4th elements are the same those of 

the 1st element. Therefore Jacobian matrix of them should be the same. Also in    integral   is 

constant and nothing depends on the position of the element. In short [  ]  [ 4]  [  ]. 

Element 3: 

3rd element is a triangular one. Its Jacobian matrix is 
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[ 3]  [
    
    

] [
    
     
       

]   [
     
     

]               [ 3]   [
   
   

]               | 3|         

With this information first entry of [ 3] can be calculated as follows 

   
3    ∫ ∫   {[       ][       ]  [       ][       ]} 

 

 
     

   

   

 

   

         

Here it is important to use correct integral limits if we are not using numerical integration. As seen in 

Figure 3.2, on a master triangular element  changes between 0 and 1 and   changes between 0 and 

   . 

Repeating similar calculations for the other entries, [ 3] turns out to be 

[ 3]   [
           
        
        

] 

Element 5: 

The geometrical similarity between 1st , 2nd and 4th elements mentioned above also exists between 

3rd and 5th elements. Therefore [  ]  [ 3]. 

Now we have five [  ]’s that can be assembled using the following      mapping matrix 

     

[
 
 
 
 
    
    
    
    
    ]

 
 
 
 

 

Using the assembly rule and this      matrix the following global stiffness matrix can be obtained 

  

[
 
 
 
 
 
 
 
 
                                
                                            

                                   
              

                                            
                                                     

                                
                                
                                ]

 
 
 
 
 
 
 
 

 

 

Global force vector { } is zero for this problem. 

 

Now the BCs should be considered. For the NBCs with      we do not need to do anything. For 

the bottom and top surfaces of the domain, SV’s and provided MBCs in “    form” are as follows 
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Bottom surfa e (          )             
  

  
                            ⏟  

 

          ⏟    
 

 

 op surfa e (         )            
  

  
                         ⏟

 

        ⏟  
 

 

The first 4 elements have faces with MBC. Equations (3.34) and (3.35) can be used to construct {  }, 

{  }, { 3} and { 4} as follows 

{  }  

{
  
 

  
 
    

 
                          

    

 
                          

 3
 

 4
 }

  
 

  
 

             {  }  

{
  
 

  
 
    

 
                        3 

    

 
                 3         

 3
 

 4
 }

  
 

  
 

 

{ 3}  

{
 
 

 
 
    

 
                 3       4 

    

 
                 4       3 

 3
3 }

 
 

 
 

             { 4}  

{
  
 

  
 

  
4

  
4

    

 
                      

    

 
                      }

  
 

  
 

          

These four {  }’s  an be assembled into the following global { } vector 

{ }  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

    

 
                          

    

 
                           

    

 
                        3 

    

 
                 3          

    

 
                 3       4 

    

 
                 4       3 

 
 
 

    

 
                      

    

 
                      }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

The 9x9 global system that needs to be solved is 
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[
 
 
 
 
 
 
 
 
                                
                                            

                                   
              

                                            
                                                     

                                
                                
                                ]
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The boxed terms of the { } vector has unknown temperatures and they should be transferred to the 

[ ] matrix to get the following system (we also used                               ) 

[
 
 
 
 
 
 
 
 
                                
                                            

                                     
                 

                                            
                                                     

                                
                          
                          ]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
  
  

 3

 4
  

  

  

  

  }
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   }

 
 
 
 

 
 
 
 

 

where the blue entries of [ ] are the ones modified due to MBCs. This global system can be solved 

to get the following nodal temperatures 

{
 
 
 
 

 
 
 
 
  
  

 3

 4
  

  

  

  

  }
 
 
 
 

 
 
 
 

 

{
 
 
 
 

 
 
 
 

    
    
    
    
     
     
     
     
     }

 
 
 
 

 
 
 
 

   

To find the rate of heat transfer through a 1 m section of the chimney, we must evaluate the heat 

passing through the 3rd face of the 4th element, which is given by 
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  ∫  
  4

  
|
fa e 3

     
    

   

  

where the temperature distribution over the 3rd face of 4th element is 

 4|fa e 3  ∑  
4  

4

   

   
4  ⏟

     n fa e 3

   
4  ⏟

      n fa e 3

  3
4 3   4

4 4 

and its  -derivative is 

  4

  
|
fa e 3

  3
4
  3

  
  4

4
  4

  
 

where the  -derivatives of the shape functions can be written using equation (3.16) as follows 

  3

  
 

  

  

  3

  
 

  

  

  3

  
 

  3
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  3

  
 

  3
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Similarly 

  4

  
    

  4

  
     

 

 
             

Using these in the above 
   

  
|
fa e 3

 equation 

  4

  
|
fa e 3

  3
4          4

4         

  4

  
|
fa e 3

                                 

  4

  
|
fa e 3

           

  ∫                    
    

   

  

We need to do a conversion from   to   on face 3 of element 4. This is like the conversion of an 

actual element to the master element in 1D, with    
    

 
  . The integral becomes 

  

  ∫                   
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Note that we modeled only 1/8 of the chimney. Therefore the total heat that passes through 1 m 

section of the chimney is 8 times of the above value  

                

Same heat transfer  an also be obtained using the following Newton’s law of  ooling with an average 

temperature on the inner wall of the chimney 

               (
     

 
    )           

                (
           

 
    )                  

As seen the results are not close, but they should approach to each other as the mesh is refined. The 

latter one is expected to be more accurate because the differentiation involved in the first one 

amplifies the errors already existing in the approximate solution. Note that the second result is 

nothing but equal to  3
4   4

4. 

3.8 Higher Order Elements in 2D 

 

In Section 3.2 we introduced 4-node quadrilateral and 3-node triangular elements, which are also 

known as bilinear elements. Similar to 1D, it is possible to use higher order elements with more 

nodes, as shown below. 

 

                                  

                                                             

   
 

 
                           

 

 
             

 3  
 

 
                         4  

 

 
             

   
 

 
                  

 

 
             

   
 

 
                  

 

 
             

                                                                                                 

Figure 3.12 9-node quadrilateral master element and shape functions 
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           (
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     (  
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 3    (  
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 4            

       

             

Figure 3.13 6-node triangular master element and shape functions 

 

Note that these higher order elements may have curved faces, such as the ones given below. 

Geometric calculations on such elements generally use transfinite interpolation (TFI). 

 

 

  

 

Figure 3.14 Higher order 2D elements with curved faces 

 

3.9 Exercises 

 

E-3.1. Solve the chimney problem of Section 3.7 again using the following meshes and compare the 

results. 

 

 

 

 

 

𝜂 

2 1 

3 

4 

5 6 

𝜉 

NE=8,  NN=9 NE=32,  NN=25 
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E-3.2. Solve the chimney problem of Section 3.7 using the following 2 element mesh, but the 

elements are not bilinear. Equations (3.34) and (3.35) are no longer valid and new equations need to 

be derived for MBCs specified at 3-node faces. 

 

 

 

 

 

E-3.3. A straight fin of uniform cross section is fabricated from a material of thermal conductivity 

    /    , thickness       , and length        , and is very long in the direction normal 

to the page. The convection heat transfer coefficient is      /       with an ambient temperature 

of         . The base of the fin is maintained at         , while the tip is well insulated. 

 

 

 

 

 

 

a) Using a mesh of eight 6 mm-length, linear 1D elements, obtain the temperature distribution 

over the fin and find the fin heat transfer rate per unit length normal to the page. Compare 

your results with the known analytical solution. 

b) Using a mesh of sixteen (6 mm x 3 mm) bilinear quadrilateral elements, obtain the 2D 

temperature distribution over the fin. Determine the fin heat transfer rate and compare it 

with the one found in part (a). 

This problem is taken from reference [2]. 

E-3.4. A major objective in advancing gas turbine engine technologies is to increase the temperature 

limit associated with operation of the gas turbine blades. This limit determines the permissible 

turbine gas inlet temperature, which, in turn, strongly influences overall system performance. In 

addition to fabricating turbine blades from special, high-temperature, high-strength superalloys, it is 

common to use internal cooling by machining flow channels within the blades and routing air 

through the channels. We wish to assess the effect of such a scheme by approximating the blade as a 

rectangular solid in which rectangular channels are machined. The blade, which has a thermal 

conductivity of       /    , is 6 mm thick, and each channel has a 2 mm x 6 mm rectangular 

cross section, with a 4 mm spacing between adjoining channels. Under operating conditions for 

which          /     ,          ,         /     , and         , determine the 

𝑇 ,   

𝑇 ,   

𝑇𝑏 𝑘 𝑤 

𝐿 

NE=2,  NN=12 

e=1 e=2 
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temperature field in the turbine blade and rate of heat transfer per unit length to the channel. At 

what location is the temperature a maximum? 

Consider the symmetry planes and study only the shaded part of the problem domain using 12 

quadrilateral elements of size 1cm x 1cm. This problem is taken from reference [2]. 

 

 

 

 

 

 

E-3.5. For the chimney problem of Section 3.7, consider that the chimney is losing heat not only to 

the ambient air by convection, but also to the sky by radiation. The emissivity of the outer surface of 

the wall is      , and the effective sky temperature is      . Radiative heat transfer can be 

modeled as 

    
       ( 4      

4 ) 

where              /(    ) is the Stefan-Boltzmann constant. This BC is nonlinear in terms 

of the outer wall temperature of the chimney. What kind of a difficulty arises in the FE solution due 

to this BC nonlinearity? Determine the nonlinear global system and solve it. Note that you need to 

work with the Kelvin temperature scale because of the radiative heat transfer. 
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