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Differential Equation: Contains an unknown function and its derivatives.

They are important because physics of many engineering problems involve rate of changes 
(derivatives). And it is easier to understand the relationships in terms of derivatives.

PDE: involves more than one independent variable

ODE: involves only one independent variable.

Order: depends on the highest derivative.                                          is a 2nd order ODE.

Nonlinearity: Due the terms like

Coupled system of ODEs: 

Differential Equations
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Newton’s 2nd Law of Motion: 

Fourier’s Heat Law:

Swing of a Pendulum:

Mass-Spring-Damper System:

Solar Heater Collector:

Examples of ODEs
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• Consider the function   y =  x3 – x2 – 4x + 4

Mathematical Background

• An ODE can be formed by taking dy/dx

dy/dx =  3x2 – 2x – 4

• They both describe the same behavior. One directly shows the dependent variable. The other shows 
the rate of change of it.

• Solving an ODE is actually going back from dy/dx to y(x). This can be done by integration.

y(x) = x3 – x2 – 4x + C

• C is the integration constant. For different integration constants different equations will be obtained
(If the ODE was 2nd order than we would integrate twice and got two constants).

• Only C=4 corresponds to the original function.

• C can be determined if y(x) is known at one point. This value is known as the INITIAL VALUE.

• For example if the INITIAL CONDITION y(0)=4 is known, than C can be determined.

• A typical numerical solution of an ODE starts from the initial value and discretely constructs y(x) 
using the differential equation.

y(x)

x

dy/dx

x
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Euler’s Method

• General form of the ODEs that we will study is

• f(x,y) is known and y(x) is to be determined.
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Example 40:

• Solve the following initial value problem over the interval [0,2] using     (a) h=0.5,    (b) h=0.25.

Note that the analytical solution is  y(x) = ex3/3 – 1.2x

1     y(0)          y2.1 yx    
dx

dy 2 

 

0 

1 

2 

0 1 2 

(a)  h = 0.5.     yi+1 = yi + f(xi, yi) h      where f(x) = yx2 – 1.2y

i = 0 y1 = y0 + f(x0, y0) h      y1 = y(0.5) = 1 + (1*02 – 1.2*1) 0.5  = 0.4

i = 1 y2 = y1 + f(x1, y1) h      y2 = y(1.0) = 0.4 + (0.4*0.52 – 1.2*0.4) 0.5  = 0.21

i = 2 y3 = y2 + f(x2, y2) h      y3 = y(1.5) = 0.21 + (0.21*12 – 1.2*0.21) 0.5  = 0.189

i = 3 y4 = y3 + f(x3, y3) h      y4 = y(2.0) = 0.189 + (0.189*1.52 – 1.2*0.189) 0.5 = 0.28823

• Analytical solution is shown with blue.

• Solution for h=0.5 is shown with red.

Exercise 45: Solve the above example for h=0.25 
to obtain the solution shown in the middle (with 
black).
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Error Analysis of Euler’s Method

• Truncation Error (TE) for the Euler’s Method is composed of two parts.

• Local TE: Error due to the application of the method over a single step.

• Propagated TE: Error due to the approximations produced in the previous steps.

• Global TE: The sum of these two.

• For error analysis Euler’s Method can be derived from Taylor Series Exapnsion.

• Local error of Euler’s Method is of order O(h2).

• But actually Euler’s Method is first order and its global error is of order O(h). It can give exact 
predictions only if y(x) is linear.

• Exercise 46: For the previous example, calculate the true local and global errors at each step. To 
calculate local errors you need to use the exact value at the beginning of each step. Also estimate the 
local errors with the above formula and compare the true and estimated values.
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Higher Order Methods

• Higher order methods can be derived by using more terms in the TSE.

• For example the second order method will be

• This requires the 1st derivative of the given function f(x,y). It can be obtained using the chain rule.
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• Formuas for higher derivatives is even more complicated.

• These methods are not preferred. We will learn other accurate methods that uses only the given 
function f(x,y) but not its derivatives. These methods are

• Heun’s Method

• Midpoint Method

• Runge-Kutta Methods
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Heun’s Method

• Euler’s Method: yi+1 = yi + f(xi, yi) h.

• Can we use a better estimate for the derivative instead of f(xi,yi).

Predictor step:

• Use Euler’s Method to find a first estimate for yi+1.

• Using y0
i+1 calculate the slope at xi+1.

h )y,x(f    y    y iii
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Corrector step:

• Take the average of slopes at xi and xi+1.

• Use it to calculate a new estimate for yi+1.
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Heun’s Method (cont’d)

• Heun’s Method is a predictor-corrector method.

• Corrector step can be used more than once to get better estimates for yi+1.

Predictor: y0
i+1 = yi + f(xi, yi) h

Corrector: y1
i+1 = yi + [ f(xi, yi) + f(xi+1, y

0
i+1)]/2 * h

Corrector: y2
i+1 = yi + [ f(xi, yi) + f(xi+1, y

1
i+1)]/2 * h

... continue until the error falls below the tolerance

• If  f=f(x) only, than the predictor step is not required. Corrector step becomes

Note the similarity between the above formula and the trapezoidal Rule.

• Heun’s Method is 2nd order accurate. It can obtain exact results when the solution y(x) is quadratic.

• It has a global error of O(h2) and local error of O(h3).
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Midpoint Method

• Similar to Heun’s Method this also tries to improve the Euler’s Method by using a better slope.

• Use Euler’s Method to find an estimate for yi+1/2.

• Using yi+1/2 calculate the slope at xi+1/2.

slope = f(xi, yi+1/2)
2/h  )y,x(f    y    y iii2/1i 

• Use the slope at xi+1/2 to calculate an estimate for yi+1.
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• Unlike Heun’s Method, second step can NOT be applied more than once.

• If  f=f(x)  only, than there is no need to perform the first step.

• Midpoint Method is 2nd order accurate. Its global error is O(h2).
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Solve dy/dx = yx2 – 1.2y with the initial condition y(0)=1 over the interval [0,2] using Heun’s 
method. Use h= 0.5. Iterate the corrector to es = 1%.  Analytical solution is  y(x) = ex3/3 – 1.2x

h = 0.5 ,  f(x) = yx2 – 1.2y  ,    y0
i+1 = yi + f(xi, yi) h   , yk

i+1 = yi + [f(xi, yi) + f(xi+1, y
k-1

i+1)]/2 * h

i = 0    Predictor:    y0
1 = 1 + (1*02 – 1.2*1) 0.5  = 0.4

Corrector:

k=1 y1
1 = 1 + [(1*02 – 1.2*1) + (0.4*0.52 – 1.2*0.4) ]/2 * 0.5  = 0.605 ea= 33.9 %

k=2 y2
1 = 1 + [(1*02 – 1.2*1) + (0.605*0.52 – 1.2*0.605) ]/2 * 0.5  = 0.5563125 ea= 8.75 %

k=3 y3
1 = 1 + [(1*02 – 1.2*1) + (0.5563*0.52 – 1.2*0.5563) ]/2 * 0.5  = 0.5678757 ea= 2.04 %

k=4 y4
1 = 1 + [(1*02 – 1.2*1) + (0.5679*0.52 – 1.2*0.5679) ]/2 * 0.5  = 0.5651295 ea= 0.49 %

y1 = y(0.5) = 0.5651295

i = 1   Predictor:    y0
2 = 0.5651295 + (0.5651295*0.52 – 1.2*0.5651295) 0.5  = 0.2966930

Corrector:

k=1 y1
2 = 0.5651295 + [(05651295*0.52 – 1.2*05651295) + (0.296693*12 – 1.2*0.296693)]/2*0.5  

= 0.4160766 ea= 28.7 %
. . . . .

Continue like this to find     y(1)=0.4104059,      y(1.5)=0.5279021,      y(2)=2.181574

Example 41:
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Solve the previous problem using the Midpoint Method with   (a) h=0.5  ,   (b) h=0.25.

f(x) = yx2 – 1.2y  ,    yi+1/2 = yi + f(xi, yi) h/2   , yi+1 = yi + f(xi+1/2, yi+1/2) h

(a) h = 0.5

i=0 Predictor:    y0+1/2 = 1 + (1*02 – 1.2*1) 0.25  = 0.7

Corrector:   y1 = y(0.5) = 1 + (0.7*0.252 – 1.2*0.7) 0.5  = 0.601875

i=1 Predictor:    y1+1/2 = 0.601875 + (0.601875*0.52 – 1.2*0.601875) 0.25  = 0.4589297

Corrector:   y2 = y(1) = 0.601875 + (0.4589297*0.752 – 1.2*0.4589297) 0.5  = 0.4555911

i=2 Predictor:    y2+1/2 = 0.4555911 + (0.4555911*12 – 1.2*0.4555911) 0.25  = 0.4328116

Corrector:   y3 = y(1.5) = 0.4555911 + (0.4328116*1.252 – 1.2*0.4328116) 0.5  = 0.5340383

i=3 Predictor:    y3+1/2 = 0.5340383 + (0.5340383*1.52 – 1.2*0.5350383) 0.25  = 0.6742233

Corrector:   y4 = y(2) = 0.5340383 + (0.6742233*1.752 – 1.2*0.6742233) 0.5  = 1.1619087

Exercise 47: Solve part (b) of the above example

Example 42:
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• RK Methods are a generalization of ODE solvers that only use the known function f(x,y) but not its 
derivatives. Therefore their applications are very simple. 

• 1st order (n=1) RK Method is actually the Euler’s Method.

Generalized Runge-Kutta Methods

• Euler’s Method:

• Heun’s Method:

• Midpoint Method:

• These methods can be generalized as Runge Kutta (RK) Methods:
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2nd order Runge Kutta

yi+1 = yi + (a1k1 + a2k2)       (Eq. 1) 

k1 = f(xi , yi)

k2 = f(xi + p1h, yi +q11 k1 h)

A Taylor Series analysis can be used to determine the constants a1, a2, p1, q11.
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Using this in (Eq. 1) we get
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• Compare equal order terms in (Eq. 2) and (Eq. 3)

a1 + a2 = 1 There are 4 unknowns and 3 equations. 

a2 p1 = ½ Therefore we need to choose one of them arbitrarily and calculate the others.

a2 q11 = ½ This means there are many different 2nd order Runge Kutta Methods.

• Select a2 = ½     a1 = ½ ,   p1 = 1 ,   q11 = 1.      This is Heun’s Method

yi+1 = yi + (½ k1 + ½ k2)h   ,    k1 = f(xi , yi)   ,     k2 = f(xi+h , yi+h k1)

• Select a2 = 1     a1 = 0 ,   p1 = ½ ,   q11 = ½.      This is the Midpoint Method

yi+1 = yi + k2h   ,    k1 = f(xi , yi)   ,   k2 = f(xi + h/2 , yi + h/2 k1)

• Select a2 = 2/3  a1 = 1/3 ,   p1 = 3/4 ,   q11 = 3/4 .      This is Ralston’s Method

yi+1 = yi + (1/3 k1 + 2/3 k2)h   ,   k1 = f(xi , yi)   ,   k2 = f(xi + 3/4 h , yi + 3/4 k1)

• Although these are all 2nd order methods, error of the Ralston’s Method is somewhat smaller than 
the other two and it is the preferred 2nd order RK Method.

2nd order Runge Kutta (cont’d)
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Graphical Depiction of the Ralston’s Method

• Use Euler’s Method to find an estimate for yi+3/4.

• Using yi+3/4 calculate the slope at xi+3/4 as

f(xi+3/4 , yi+3/4)

4/3h  )y,x(f    y    y iii4/3i 

• Calculate a weighted slope using the slope at xi and xi+3/4 as

• Use this slope and estimate yi+1.
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3rd order RK Method

• Again, many different 3rd order RK Methods can be written. The preferred one is

yi+1 = yi + h (k1 + 4k2 + k3) / 6

k1 = f(xi , yi)

k2 = f(xi + h/2, yi + k1 h/2)

k3 = f(xi + h, yi – k1 h + 2 k2 h)

4th order RK Method

• The preferred 4th order RK Method is

yi+1 = yi + h (k1 + 2k2 + 2k3 + k4) / 6

k1 = f(xi , yi)

k2 = f(xi + h/2, yi + k1 h/2)

k3 = f(xi + h/2, yi + k2 h/2)

k4 = f(xi + h, yi + k3 h)

• This method is 4th order accurate and used very often for solving ODEs.

Exercise 48: What happens to the Runge Kutta Methods in the simplified case of f=f(x) only?
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• Solve dy/dx = yx2 – 1.2y with the initial condition y(0)=1 over the interval [0,2] using RK4         
method. Use h= 0.5. 

yi+1 = yi + h (k1 + 2k2 + 2k3 + k4) / 6

k1 = f(xi , yi)     k2 = f(xi + h/2, yi + k1 h/2)     k3 = f(xi + h/2, yi + k2 h/2)     k4 = f(xi + h, yi + k3 h)

i=0 , k1 = f(0, 1) = -1.2 ,  k2 = f(0.25, 0.7) = -0.79625

k3 = f(0.25, 0.800938) = -0.91107 ,    k4 = f(0.5, 0.544467) = -0.51724

y1 = y(0.5) = 0.572344       et = 0.032 %

i=1 , k1 = f(0.5, 0.572344) = -0.54373 ,  k2 = f(0.75, 0.436412) = -0.27821

k3 = f(0.75, 0.50279) = -0.32053 ,  k4 = f(1, 0.412079) = -0.08242

y2 = y(1) = 0.420375       et = 0.006 %

i=2 , k1 = f(1, 0.420375) = -0.08407 ,  k2 = f(1.25, 0.399356) = 0.144767

k3 = f(1.25, 0.456567) = 0.165505 ,  k4 = f(1.5, 0.503128) = 0.528284

y3 = y(1.5) = 0.509104       et = 0.01 %

i=3 , k1 = f(1.5, 0.509104) = 0.534559 ,  k2 = f(1.75, 0.642744) = 1.197111

k3 = f(1.75, 0.808382) = 0.505611 ,  k4 = f(2, 1.26191) = 3.533348

y4 = y(2) = 1.29855       et = 0.54 %

Example 43:
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Solving System of ODEs

• We can use any of the methods that we learned to solve a system of ODEs.

• An example of this is obtained when we reduce a second order ODE to first order by change of 
variables.

Example 44:

Solve the following ODE in the range [0,5] using h=0.1 with Euler’s Method.

0)0(
dt

dy
      ,  2)0(y      ,  0    y    t    

dt

yd
2

2



Separate this 2nd order ODE into two 1st order ODEs by defining a new variable z = dy/dt

0)0(z        ,y  t    f    
dt

dz

2)0(y       ,z    f    
dt

dy

2

1





i=0,   t0=0,    y0=2,   z0=0.

y1 = y0 + f1(z0) h = 2 + (0)(0.1) = 2

z1 = z0 + f2(t0 ,y0) h = 0 + (0–2)(0.1) = -0.2

i=2,   t1=0.1,    y1=2,   z1=-0.2.

y2 = y1 + f1(z1) h = 2 + (-0.2)(0.1) = 1.98

z2 = z1 + f2(t1 ,y1) h = -0.2 + (0.1–2)(0.1) = -0.39         Continue like this until i=50.
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Stability of Numerical Solutions of ODEs

• Consider the following ODE

at
0exact0 eyy          y)0(y    ,ay  -    

dt

dy 

• If we solve this with the Euler’s Method

ah) (1     y   h  ya      y    h 
dt

dy
    y    y iii

i
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• Consider positive “a” values, which means that the solution asymptotically approaches to zero. Our 
numerical solution will behave like this if yi+1 is smaller than yi at all steps. This requires

a

2
h           1   ah1 

• This is the stability condition of the Euler’s Method for this problem. The step size we can use has 
an upper limit. For larger step sizes,  y   as  i  , which means that the solution is unstable.

• Euler’s Method is explicit. That is in Euler’s equation the unknown yi+1, appears only at the left hand 
side and it can be solved explicitly using the known quantities at the right hand side.

• Explicit methods need to satisfy a stability condition.

• We can derive implicit methods that have better stability characteristics or even unconditionally 
stable. A simple one is the Backward Euler’s (Implicit Euler) Method.
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Implicit Euler (unconditional stability)

• In Euler’s Method use the slope at point xi+1 instead of xi.

• This new method is called Implicit Euler. Use it to solve the previous problem.

ah) (1

y
     y            h  ya      y    h 

dt

dy
    y    y i

1i1ii

1i

i1i


 





• For positive “a” values, yi+1 is always smaller than yi

• y  0 as  i  , regardless of the step size h. Therefore this method is unconditionally stable. We 
can select large step sizes and the solution will still be stable.

• However very large step sizes might not capture the details of the solution properly.

• The disadvantage of implicit methods is that their solution requires more work compared to explicit 
methods. This can be seen better when an implicit method is applied to solve a set of ODEs. This 
requires the solution of a system of equations at each step (see page 729 for details).

Exercise 49: Solve                                         using

(a) Explicit Euler with h=0.1 ,  h=0.2 ,  h=0.5

(b) Implicit Euler with h=0.1 ,  h=10

Calculate 5 steps for each case and check the true error at each step. Do you observe any instability?

0)0(y    ,20y  -    
dt

dy

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• The overall efficiency of the method can be improved by using a better predictor.

• We can use the Midpoint Method for the predictor instead of Euler’s Method.

Multistep Methods

• The methods discussed up to here are all one-step methods.

• They use the information at a single point xi to predict the value yi+1.

• Multistep methods use the available information at point xi-1, xi-2, etc.

• Note that they can not be used at the first few steps of the computation.

Non-Self-Starting Heun’s Method

• The original Heun’s method is

)O(h isError  Local               :Corrector

)O(h isError  Local                                      :Predictor

3

2

h  
2

)y,x(f    )y,x(f
    y    y

h  )y,x(f    y    y

0
1i1iii

i1i

iii
0

1i










h2  )y,x(f    y    y ii1i
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1i
 

x

y0
i+1

yi-1

xi-1 xi xi+1

yi

x

yi+1

xi xi+1

yi
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2

)y,x(f    )y,x(f
    y    y

0
1i1iii

i1i









24

• Using these in the definition of true error we get

Error Analysis for the N-S-S Heun’s Method

• Local errors of the predictor and corrector steps of the Non-Self-Starting Heun’s Method can be 
derived using TSE analyses

)(f h 
12

1
    E c

3
c      :Corrector)(f h 

3

1
    E p

3
p     :Predictor

)(f h 
3

1
       y   V.T p

30
1i  

)(f h 
12

1
       y   V.T c

3
1i  

• Subtract the first one from the second

)(f h
12

1
     

5

  y  y
                  )(f h 

12

5
      y     y  0 31i

0
1i30

1i1i 


 


• Note that the right-hand-side is equal to the error of the corrector (Ec) except the second derivative 
of the function is evaluated at a different point. Assuming that f  does not vary much in the region of 
interest

5

  y  y
     E 1i

0
1i

c
 



• This formula can be used to estimate the error at each step of the Non-Self-Starting-Heun’s Method. 
It uses the predicted and corrected values of yi+1.
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Modifiers for the N-S-S Heun’s Method

• Previously derived Ec can be added to yi+1 to get even a better result. It is therefore called the 
corrector modifier.

5

  y  y
         y  y

0
1i1i

1i1i







• Similarly a modifier for the predictor step can be derived (see page 737 for details).

)  y  (y
5

4
         y   y 0

ii
0

1i
0

1i  

• These modifiers can be applied after each predictor and corrector step to increase the accuracy of the 
method. If we use multiple correctors than the modifier can also be applied multiple times.

Example 45: Solve dy/dx = yx2 – 1.2y with the initial condition y(0)=1 over the interval [0,2] 
using the N-S-S Heun’s Method with modifiers. Use h= 0.5. Note that the exact solution is                       
y(x) = ex3/3 – 1.2x.

predictor:   y0
i+1 = yi-1 + f(xi , yi) 2h        modifier:    y0

i+1  y0
i+1 + 4/5(yi - y0

i)

corrector:   yi+1 = yi + 0.5 [f(xi , yi) + f(xi+1 , y0
i+1)] h       modifier:    yi+1  yi+1 + (yi+1 - y0

i+1)/5

x0=0,   y0=1   are given.

i=0. The predictor needs x-1, which is not given. It can be obtained using the known exact solution.
Or this step can be done with a different method, for example the Midpoint Method.
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Example 45 (cont’d):

x0=0,   y0=1   are given.

i=0.  Use the Midpoint Method

Predictor:   y0+1/2 = 1 + (1*02 – 1.2*1) 0.25  = 0.7

Corrector:  y1 = y(0.5) = 1 + (0.7*0.252 – 1.2*0.7) 0.5  = 0.601875         et = 5.19 %

i=1.  Predictor:   y0
2 = 1 + (0.601875*0.52 – 1.2*0.601875) (2*0.5)  = 0.428219

Predictor modifier:  Can not be applied because we do not have y0
1.

Corrector:  y2 = 0.601875 + 0.5 [(0.601875*0.52 – 1.2*0.601875) + 
(0.428219*12 – 1.2*0.428219) ]*0.5  = 0.437519

Corrector modifier: y2 = 0.437519 + (0.437519 – 0.428219) / 5 = 0.439379       et = 4.08 %

i=2  &  i=3 are exercises for you.

• Note that N-S-S Heun’s method is not a popular multi-step method. Adams formulas that we will 
study next are generally preferred.
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Adam’s Basforth Formulas

• They can be derived using appropriate derivative estimates in the TSE for yi+1.

• They are explicit formulas.

• Their general formula is

where the constants bk are given at Table 26.1

• 1st order: 

• 2nd order: 

• 3rd order:
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Derivation of the 3rd order Adam’s Basforth Formula

• Write TSE for yi+1

. . . . . .    )O(h    h 
6

f
    h 

2

f
    h f    y    y 43i2i

ii1i 







• Use backward estimates for f  and f  (They are given in Figure 23.2).

)h(O    
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      f 22i1ii

i 
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• Substitute these into the 1st equation
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• Arrange the terms to get

)O(h    f
12

5
f

12

16
f
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23
h    y    y 4

2i-1i-ii1i 









Exercise 50: To get the exact error term we need to use the exact errors in the derivative estmates. 
Figure 23.2 does not provide them. You need to derive them.
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Adam’s Moulton Formulas

• Their general formula is

where the constants bk are given at Table 26.2

• 2nd order: 

• 3rd order:

• These are implicit formulas because the unknown yi+1 appears on both sides of the equation.

Exercise 51: Derive the 3rd order formula and the corresponding error term using a proper derivative 

estimates in the TSE for yi+1.

• Other higher order formulas can be derived. Two popular ones are the fourth-order Adams Method 
and  the Milne’s Method. (see page 746-747 for details).
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• Solve the following initial value problem in the range [0,2.5] using 4th order Adams Method with 
multiple correctors. If necessary start the solution with the RK4 Method. Use h = 0.5









  3i2i1iii
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dx
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


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• Fourth-order Adams Method is a predictor corrector method.
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    f
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    f

24

19
    f

24

9
 h    y    y     :Corrector

• To find yi+1, Adams Method needs fi-3, which needs yi-3. Therefore we can not use the Adams 
Method until we get y1 , y2 and y3 using the fourth-order Runge-Kutta Method.

i =0 i =1 i =2

k1 = f(x0 , y0) = -2 k1 = -0.888889 k1 = -0.5

k2 = f(x0 + h/2, y0 + k1 h/2) = -1.2 k2 = -0.634921 k2 = -0.388889

k3 = f(x0 + h/2, y0 + k2 h/2) = -1.36 k3 = -0.671202 k3 = -0.401235

k4 = f(x0 + h, y0 + k3 h) = -0.88 k4 = -0.498866 k4 = -0.319753

y1 = y0 + h (k1 + 2k2 + 2k3 + k4) / 6 = 1.333333 y2 = 1.000000 y3 = 0.8

Example 46:
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• Now that we have y0=2,  y1=1.333333,  y2=1 and y3 = 0.8   we can start using the Adams Method.

i=3. Predictor:  y0
4 = y3 + 0.5(55 f3 – 59 f2 + 37 f1 – 9 f0 ) / 24 = 0.737731

Corrector:  y1
4 = y3 + 0.5(9 f04 + 19 f3 - 5 f2 + f1 ) / 24 = 0.660790

Corrector:  y2
4 = 0.665599

Corrector:  y3
4 = 0.665298

Corrector:  y4
4 = 0.665317

i=4. Predictor:  y0
5 = y4 + 0.5(55 f4 – 59 f3 + 37 f2 – 9 f1 ) / 24 = 0.585786

Corrector:  y1
5 = y4 + 0.5(9 f05 + 19 f4 - 5 f3 + f2 ) / 24 = 0.569067

Corrector:  y2
5 = 0.569963

Corrector:  y3
5 = 0.569915

Example 46 (cont’d):
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• For a system of ODEs or for an ODE of order 2 or more, we need to specify multiple initial/boundary 
conditions.

• If all these conditions are provided at the same point, the problem is said to be an Inıtial Value 
Problem (IVP).

Boundary Value Problems (BVP)

0,11211
1 y)0(y        ,)y ,y ,t(f    

t d

 yd


t

y1(t)
y

y2(t)
0,22212

2 y)0(y        ,)y ,y ,t(f    
t d

 yd


L

0
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y)L(y

y)0(y
            ,)y ,x(f    

 xd

 yd






• If these conditions are not provided at the same point, the problem is said to be a Boundary Value 
problem (BVP).

x

y(x)
y

L
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• Consider the following boundary value problem 

The Shooting Method

L

0

2

2

TT(L)

TT(0)
            )TT,f(x,    

 xd

 Td






• Define a new variable z = dT/dx  and separate the above ODE into two 1st order ODEs.

0T0)        T(z
 xd

 Td


?z(0)              )TT,f(x,    
 xd

z d


T(x)

x

L

• This is not an initial value problem and z(0) is not known.

• Shooting method assumes a z(0) value and solves the problem as if it was an initial value problem.

• This is a trial-error method.

• Assume a  z(0) value, solve the problem. Check the calculated T(10) with the given condition.

• Based on the above comparison assume another z(0). Repeat the solution and the comparison.

• Continue like this. For a linear problem exact T(10) can be found after 3 solutions. A nonlinear 
problem is more difficult to solve with the shooting method.
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• Solve the following boundary value problem 

020T(10)

04T(0)
            0.2    0.01T    

 xd

 Td
2

2






T(x)

x

10
• Separate the problem into two 1st order ODEs.

400)        T(z
 xd

 Td


?z(0)           0.2     T0.01    
 xd

z d


• Assume a value for z(0), the slope at x=0.  For example z(0)=15.

• Select a method and a step size and solve this initial value problem. For example use the Euler’s 
Method with h=2. The results are shown below.

T0 = 40     z0 = 15

T1 = T0 + z0 (2) = 70 z1 = z0 + (0.01 T0 - 0.2) (2) = 15.4

T2 = T1 + z1 (2) = 100.8 z2 = z1 + (0.01 T1 - 0.2) (2) = 16.4

T3 = T2 + z2 (2) = 133.6 z3 = z2 + (0.01 T2 - 0.2) (2) = 18.016

T4 = T3 + z3 (2) = 169.632 z4 = z3 + (0.01 T3 - 0.2) (2) = 20.288

T5 = T4 + z4 (2) = 210.208 z5 = z4 + (0.01 T4 - 0.2) (2) = 23.28064

T(x)

x

10

Example 47:
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• The guess z(0)=15 resulted in T(10)=210.208. This time assume a lower value, like z(0)=10. 

• The solution with Euler’s Method and h=2 is given below

T0 = 40     z0 = 10

T1 = T0 + z0 (2) = 60 z1 = z0 + (0.01 T0 - 0.2) (2) = 10.4

T2 = T1 + z1 (2) = 80.8 z2 = z1 + (0.01 T1 - 0.2) (2) = 11.2

T3 = T2 + z2 (2) = 103.2 z3 = z2 + (0.01 T2 - 0.2) (2) = 12.416

T4 = T3 + z3 (2) = 128.032 z4 = z3 + (0.01 T3 - 0.2) (2) = 14.08

T5 = T4 + z4 (2) = 156.192 z5 = z4 + (0.01 T4 - 0.2) (2) = 16.24064

• The first guess of z(0)=15  resulted in  T(10)=210.208.

Second guess of  z(0)=10  resulted in  T(10)=156.192.

• Third guess can be obtained by performing a linear interpolation with the first two guesses.

T(x)

x

10

055095.14)0(z

)192.156200(
192.156208.210

1015
10)0(z









T(10)

z(0)

210.208

156.192

200

10 15?

Example 47 (cont’d):
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• Perform another solution with the third guess, z(0)=14.055095.

T0 = 40     z0 = 14.055095

T1 = T0 + z0 (2) = 68.1102 z1 = z0 + (0.01 T0 - 0.2) (2) = 14.4551

T2 = T1 + z1 (2) = 97.0204 z2 = z1 + (0.01 T1 - 0.2) (2) = 15.4173

T3 = T2 + z2 (2) = 127.8550 z3 = z2 + (0.01 T2 - 0.2) (2) = 16.6577

T4 = T3 + z3 (2) = 161.7704 z4 = z3 + (0.01 T3 - 0.2) (2) = 19.1148

T5 = T4 + z4 (2) = 200.0000 z5 = z4 + (0.01 T4 - 0.2) (2) = 21.9502

• Note that we got T(10)=200 exactly. This is because the ODE that we are solving is linear. 
Therefore the linear interpolation we performed with the first two guesses was good enough to get 
T(10) exactly.

• T(10) being exact does not mean that the intermediate T values are exact. They are not.

• For this linear ODE, three trials was enough. For a nonlinear ODE it is not this simple. You may 
need to combine the first three guesses with a 2nd order interpolation to get a fourth guess, and so 
on (Read page 755 for details).

Exercise 52: Solve the following BVP with the shooting mehod.

T(x)

x

10

1u(3)           2)1(u            x    u u 
5

x
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
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
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Example 47 (cont’d):
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Finite Difference Method

• The idea is to replace the derivatives in the ODE with finite divided differences.

Example 48: Consider the same BVP.

020T(10)

04T(0)
            0.2    0.01T    

 xd

 Td
2

2






For h=Dx=2 we will have four points at which we need to determine T.

T5=200T0=40

T1 T2 T3 T4

Rearrange the above difference equation and write it for each unknown point.

General: -Ti-1 + 2.04 Ti - Ti+1 = 0.8

i=1: -T0 + 2.04 T1 - T2 = 0.8    (T0=40 is known)

i=2: -T1 + 2.04 T2 - T3 = 0.8

i=3: -T2 + 2.04 T3 - T4 = 0.8

i=4: -T3 + 2.04 T4 - T5 = 0.8    (T5=200 is known)

0.2    0.01T    
h

TT2T
                  

h

TT2T
    

 xd

 Td
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1ii1i
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1ii1i
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Approximating the second derivative with centered differences, ODE becomes
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This is 4x4 system of linear equations. Solve it with one of the methods that we learned.

• Note that this is a tridiagonal system. There are very efficient algorithms specially designed to solve 
such systems. See page 286 for details.

• More accurate results can be obtained by using

• Higher order derivative approximations. This will increase the bandwidth of the coefficient 
matrix.

• Smaller step size. This will result in a larger matrix.

• If we use higher order approximations, we may need to use forward or backward differences at the 
points close to the boundaries.

Exercise 53: Solve the previous problem with h=0.1. Write a computer program that will generate 
the system of equations and solve them using an iterative method. Compare the answers with the 
exact solution (See page 753).
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Example 48 (cont’d):


