ME 310
 Numerical Methods

Optimization

These presentations are prepared by
Dr. Cuneyt Sert
Mechanical Engineering Department
Middle East Technical University
Ankara, Turkey
csert@metu.edu.tr

They can not be used without the permission of the author

Optimization

- Optimization is similar to root finding. Both involve guessing and searching for a point on a function.

- Optimum is the point where $f^{\prime}(x)=0 . \quad f^{\prime \prime}(x)$ indicates whether it is a minimum or a maximum.
- In this range there can be only one global minimum and one global maximum. These can be at the end points of the interval.
- There can be several local minimums and local maximums.
- Practical optimization problems are complicated and include several constraints.
- Minimization of cost of a manufactured part (time, quality, quantity, etc.).
- Maximization of efficiency of a cooling unit (size, material, safety, ergonomics, cost, etc.).
- Transportation problem (manage the shipping between several sources and several warehouses).
- We will study 1D $(\mathrm{f}=\mathrm{f}(\mathrm{x}))$, unconstrained optimization using the following methods.
- Bracketing methods (Golden Section Search, Quadratic Interpolation)
- Open Methods (Newton's Method)

Bracketing Methods

- Consider finding the maximum of a function $f(x)$ in the interval $[a, b]$.
- Consider a function that has only one maximum (or minimum) in $[\mathrm{a}, \mathrm{b}]$.
- Similar to the bracketing methods used for root finding, we will iteratively narrow the interval $[\mathrm{a}, \mathrm{b}]$ to locate the minimum.
- Remember that in root finding (for example in the Bisection method), only one intermediate point was enough to narrow the interval.
- In finding a maximum we need two intermediate points (x_{1} and x_{2}).
- If $f\left(x_{1}\right)>f\left(x_{2}\right)$ than the maximum is between $\left[x_{2}, b\right]$. Otherwise it is between $\left[a, x_{1}\right]$

Golden Section Search

- There are several different ways in selecting the two intermediate points $\mathrm{x}_{\mathbf{1}}$ and $\mathrm{x}_{\mathbf{2}}$.
- In Golden Section Search these two points are selected as

$$
\begin{aligned}
& x_{1}=a+d \\
& x_{2}=b-d \\
& \text { where } d=R(b-a) .
\end{aligned}
$$

- $\mathbf{R}=\frac{\sqrt{\mathbf{5}}-\mathbf{1}}{\mathbf{2}}=\mathbf{0 . 6 1 8 0 3 4} \ldots$ is called the golden-ratio. It is the positive root of $r^{2}+r-1=0$.
- If $f\left(x_{1}\right)>f\left(x_{2}\right)$ than continue with the interval $\left[x_{2}, b\right]$. Otherwise continue with $\left[a, x_{1}\right]$. This works to locate a maximum. To locate a minimum do the opposite.
- Calculate two new intermediate points in the narrowed interval and iterate like this.
- At each iteration, the interval drops by a factor of $R\left(d^{i+1}=R d^{i}\right)$.
- Stop when ($\mathrm{x}_{1}-\mathrm{x}_{2}$) drops below the specified tolerance. See page 347 for an alternative stopping criteria.

Golden Ratio

- What is the importance of the golden ratio, $\mathrm{R}=0.618034$?
- Consider the following case. Superscripts show the iteration number.

- At iteration 0,

$$
x_{1}^{0}=a^{0}+\frac{\sqrt{5}-1}{2}\left(b^{0}-a^{0}\right) \quad, \quad x_{2}^{0}=b^{0}-\frac{\sqrt{5}-1}{2}\left(b^{0}-a^{0}\right)
$$

- $f\left(x_{1}{ }^{0}\right)<f\left(x_{2}{ }^{0}\right)$, therefore continue with $\left[x_{2}{ }^{0}, b^{0}\right]$.
- At iteration $1, a^{1}=x_{\mathbf{2}}{ }^{0}, b^{1}=b^{0}$

$$
\begin{aligned}
& \mathbf{x}_{1}^{1}=\mathbf{a}^{1}+\frac{\sqrt{5}-1}{2}\left(\mathbf{b}^{1}-\mathbf{a}^{1}\right) \\
& \mathbf{x}_{2}^{1}=\mathbf{b}^{1}-\frac{\sqrt{5}-\mathbf{1}}{2}\left(\mathbf{b}^{1}-\mathbf{a}^{1}\right)=\mathbf{x}_{1}^{0}
\end{aligned}
$$

- Therefore there is no need to calculate $x_{2}{ }^{\mathbf{1}}$ and $f\left(x_{2}{ }^{1}\right)$. This saves computations.

Exercise: Show that $\mathrm{x}_{\mathbf{2}}{ }^{\mathbf{1}}=\mathrm{x}_{\mathbf{1}}{ }^{\mathbf{0}}$

Pseudocode for the Golden Section Search

$R=0.618033988$
READ a, b, maxIter, tolerance
CALCULATE fa, fb
LOOP k from 1 to maxIter

$$
\begin{aligned}
& x 1=a+R(b-a) ; f 1=\text { func }(x 1) \\
& x 2=b-R(b-a) ; f 2=\text { func }(x 2) \\
& \text { IF (f1 > f2) THEN } \\
& \quad \begin{array}{l}
a=x 2 ; x 2=x 1 ; f 2=f 1 \\
\quad x 1=a+R(b-a) ; f 1=\text { func }(x 1)
\end{array} \\
& \text { ELSE } \\
& \quad \begin{array}{l}
b=x 1 ; x 1=x 2 ; f 1=f 2 \\
x 2=b-R(b-a) ; f 2=\text { func }(x 2)
\end{array}
\end{aligned}
$$

ENDIF
WRITE $k, x 1, x 2$
IF ($(x 1-x 2)<$ tolerance $)$ STOP

Exercise 21: This pseudocode is written to find a maximum. Modify it so that it can find a minimum too.

Exercise 22: Change the stopping criteria with the one given in the book.

Exercise 23: What happens if

(i) the initial interval $[\mathrm{a}, \mathrm{b}]$ contains more than one min or max?
(ii) a is the maximum and b is the minimum, or vice versa?

Quadratic Interpolation

- Based on the fact that a quadratic ($2^{\text {nd }}$ order) polynomial often provides a good approximation of a function near an optimum point.

- Select 3 points ($x_{0}, x_{\mathbf{1}}$ and x_{2}) that contains only 1 optimum point of a function.
- Only one quadratic will pass through these points. Find the equation of this quadratic.
- Equate its first derivative to zero and find its optimum point, x_{3}.

$$
x_{3}=\frac{f\left(x_{0}\right)\left(x_{1}^{2}-x_{2}^{2}\right)+f\left(x_{1}\right)\left(x_{2}^{2}-x_{0}^{2}\right)+f\left(x_{2}\right)\left(x_{0}^{2}-x_{1}^{2}\right)}{2 f\left(x_{0}\right)\left(x_{1}-x_{2}\right)+2 f\left(x_{1}\right)\left(x_{2}-x_{0}\right)+2 f\left(x_{2}\right)\left(x_{0}-x_{1}\right)}
$$

- Similar to the Golden Section Search, narrow the interval by discarding one of the points.
- Continue with the remaining 3 points and calculate a new optimum (x_{3}).
- Iterate like this and stop when the approximate relative error drops below the tolerance value.

Newton's Method

- Recall that Newton-Raphson method is used to find the root of $f(x)=0$ as $\mathbf{x}_{\mathbf{i}+\mathbf{1}}=\mathbf{x}_{\mathbf{i}}-\frac{\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)}$
- Similarly the optimum points of $f(x)$ can be found by applying $N-R$ to $f^{\prime}(x)=0 . \quad \mathbf{x}_{\mathbf{i + 1}}=\mathbf{x}_{\mathbf{i}}-\frac{\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)}{\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{i}}\right)}$
- This open method requires only one starting point.
- It also requires the $1^{\text {st }}$ and $2^{\text {nd }}$ derivative of $f(x)$.
- It converges fast, but convergence is not guaranteed.
- At the end one can check the sign of f " (x) to determine whether the optimum point is a minimum or a maximum.
- If the derivatives are not known than their approximations can be used. This is similar to the Secant method that we learned in root finding.
- To avoid divergence, it is a good idea to use this method when we are close enough to the optimum point. So we can use a hybrid technique, where we start with a bracketing method and safely narrow the interval and than continue with the Newton's method.

Example 23:

Find the maximum of $f(x)=2 x-1.75 x^{2}+1.1 x^{3}-0.25 x^{4} \quad$ using
(a) Golden section search $\quad\left(a=-2, b=4, \varepsilon_{s}=1 \%\right)$
(b) Quadratic interpolation ($\mathrm{x}_{0}=-1.75, \mathrm{x}_{\mathbf{1}}=2, \mathrm{x}_{\mathbf{2}}=2.25$, perform 5 iterations)
(c) Newton's method $\quad\left(x_{0}=2.5, \varepsilon_{s}=1 \%\right)$

(a) Golden Section Search

inter 1: $\quad a=-2, \quad b=4, \quad x_{1}=a+R(b-a)=1.708, \quad x_{2}=b-R(b-a)=0.292$ $f\left(x_{1}\right)=1.664, \quad f\left(x_{2}\right)=0.460 \quad f\left(x_{1}\right)>f\left(x_{2}\right)$ than continue with [$\left.x_{2}, b\right]$.
$\mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right) \quad$ than $\quad \mathrm{x}_{\text {opt }}=\mathrm{x}_{1}=1.708, \quad \varepsilon_{\mathrm{a}}=(1-\mathrm{R}) *(\mathrm{~b}-\mathrm{a}) /\left|\mathrm{x}_{\text {opt }}\right|^{*} 100=134 \%$
ter 2: $\quad a=0.292, \quad b=4, \quad x_{1}=a+R(b-a)=2.584, \quad x_{2}=1.708$

$$
f\left(x_{1}\right)=1.316, \quad f\left(x_{2}\right)=1.664 \quad f\left(x_{1}\right)<f\left(x_{2}\right) \text { than continue with }\left[a, x_{1}\right] .
$$

$$
\mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right) \quad \text { than } \quad \mathrm{x}_{\text {opt }}=\mathrm{x}_{2}=1.708, \quad \varepsilon_{\mathrm{a}}=(1-\mathrm{R}) *(\mathrm{~b}-\mathrm{a}) /\left|\mathrm{x}_{\text {opt }}\right|^{*} 100=83 \%
$$

ier 3: $a=0.292, \quad b=2.584, \quad x_{1}=1.708, \quad x_{2}=b-R(b-a)=1.167$

$$
f\left(x_{1}\right)=1.664, \quad f\left(x_{2}\right)=1.235 \quad f\left(x_{1}\right)>f\left(x_{2}\right) \text { than continue with }\left[x_{2}, b\right] .
$$

$$
\mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right) \quad \text { than } \quad \mathrm{x}_{\text {opt }}=\mathrm{x}_{1}=1.708, \quad \varepsilon_{\mathrm{a}}=(1-\mathrm{R}) *(\mathrm{~b}-\mathrm{a}) /\left|\mathrm{x}_{\text {opt }}\right|^{*} 100=51 \%
$$

ier 11: $\mathrm{x}_{\mathrm{opt}}=2.073, \varepsilon_{\mathrm{a}}=0.9 \%$

Example 23 (cont'd)

(b) Quadratic Interpolation

iter 1: $\quad \mathrm{x}_{0}=-1.75, \quad \mathrm{x}_{\mathbf{1}}=2.0, \quad \mathrm{x}_{\mathbf{2}}=2.25$
Calculate $x_{3}=2.0617$
iter 2: $\quad x_{0}=2.0, \quad x_{1}=2.0617, \quad x_{2}=2.25$
Calculate $x_{3}=2.0741$
iter 3: $\quad x_{0}=2.0617, x_{1}=2.0741, \quad x_{2}=2.25$ Calculate $x_{3}=2.0779$
iter 4: $x_{0}=2.0741, x_{1}=2.0779, \quad x_{2}=2.25$
Calculate $x_{3}=2.0791$
iter 5: $\quad x_{0}=2.0779, \quad x_{1}=2.0791, \quad x_{2}=2.25$
Calculate $x_{3}=2.0786$
$\varepsilon_{a}=\left|\left(x_{3}{ }^{\text {present }}-\mathrm{x}_{3}{ }^{\text {previous }}\right) / \mathrm{x}_{3}{ }^{\text {present }}\right| * 100=0.02 \%$

Example 23 (cont'd)

(c) Newton's Method

$f^{\prime}(x)=2-3.5 x+3.3 x^{2}-x^{3} \quad, \quad f^{\prime \prime}(x)=-3.5+6.6 x-3 x^{2}$
$\mathrm{x}_{0}=2.25$
iter 1: $\quad x_{1}=x_{0}-f^{\prime}\left(x_{0}\right) / f^{\prime \prime}\left(x_{0}\right)=2.19565$

$$
\varepsilon_{\mathrm{a}}=\left|\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) / \mathrm{x}_{1}\right|^{*} 100=13.9 \%
$$

iter 2: $\quad x_{2}=x_{1}-f^{\prime}\left(x_{1}\right) / f^{\prime \prime}\left(x_{1}\right)=2.0917$

$$
\varepsilon_{a}=\left|\left(x_{2}-x_{1}\right) / x_{2}\right|^{*} 100=5.0 \%
$$

iter 3: $\quad x_{3}=x_{2}-f^{\prime}\left(x_{2}\right) / f^{\prime \prime}\left(x_{2}\right)=2.07951$

$$
\varepsilon_{\mathrm{a}}=\left|\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right) / \mathrm{x}_{3}\right|^{*} 100=0.6 \%
$$

