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• Optimization is similar to root finding. Both involve guessing and searching for a point on a function.

x

f(x)

Global minimum

f (x) = 0  , f (x) > 0

Global maximum

f (x) = 0  , f (x) < 0

a b

• Optimum is the point where f (x) = 0.    f (x) indicates whether it is a minimum or a maximum.

• In this range there can be only one global minimum and one global maximum. These can be at the 
end points of the interval.

• There can be several local minimums and local maximums.

• Practical optimization problems are complicated and include several constraints.

• Minimization of cost of a manufactured part (time, quality, quantity, etc.).

• Maximization of efficiency of a cooling unit (size, material, safety, ergonomics, cost, etc.).

• Transportation problem (manage the shipping between several sources and several warehouses).

Optimization
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• We will study 1D (f=f(x)), unconstrained optimization using the following methods.

• Bracketing methods (Golden Section Search, Quadratic Interpolation)

• Open Methods (Newton’s Method)

Bracketing Methods

• Consider finding the maximum of a function f(x) in the interval [a,b].

• Consider a function that has only one maximum (or minimum) in [a,b].

• Similar to the bracketing methods used for root finding, we will iteratively narrow the interval [a,b] 
to locate the minimum.

• Remember that in root finding (for example in the Bisection method), only one intermediate point 
was enough to narrow the interval.

• In finding a maximum we need two intermediate points (x1 and x2).

• If   f(x1) > f(x2)  than the maximum is between [x2,b].   Otherwise it is between [a,x1]

a bx2 x1 a bx2 x1 a bx2 x1 a bx2 x1
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• There are several different ways in selecting the two intermediate points x1 and x2.

• In Golden Section Search these two points are selected as

Golden Section Search

a bx1x2

d

d

• is called the golden-ratio.   It is the positive root of  r2 + r – 1 = 0.

• If  f(x1) > f(x2)  than continue with the interval [x2,b].   Otherwise continue with [a,x1]. This works to 
locate a maximum. To locate a minimum do the opposite.

• Calculate two new intermediate points in the narrowed interval and iterate like this.

• At each iteration, the interval drops by a factor of R  ( d i+1 = R d i ).

• Stop when (x1-x2) drops below the specified tolerance. See page 347 for an alternative stopping 
criteria.

...618034.0
2

15
R 




x1 = a + d

x2 = b – d

where   d = R (b-a).
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• What is the importance of the golden ratio, R = 0.618034 ?

• Consider the following case. Superscripts show the iteration number.

Golden Ratio

• At iteration 0,

• f(x1
0) < f(x2

0) , therefore continue with [x2
0,b0].

• At iteration 1, a1= x2
0 ,  b1= b0

• Therefore there is no need to calculate x2
1 and  f(x2

1).

This saves computations.

Exercise: Show that x2
1 = x1
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Pseudocode for the Golden Section Search

R = 0.618033988

READ  a,  b,  maxIter,  tolerance

CALCULATE   fa,  fb

LOOP k from 1 to maxIter

x1 = a + R(b-a) ; f1 = func(x1)

x2 = b - R(b-a) ; f2 = func(x2)

IF ( f1 > f2) THEN

a = x2 ; x2 = x1 ; f2 = f1

x1 = a + R(b-a)    ;   f1 = func(x1)

ELSE

b = x1 : x1 = x2 ; f1 = f2

x2 = b - R(b-a)    ;   f2 = func(x2)

ENDIF

WRITE   k, x1, x2

IF ( (x1 – x2) < tolerance)  STOP

ENDLOOP

Exercise 21: This pseudocode is written to 
find a maximum. Modify it so that it can find a 
minimum too.

Exercise 22: Change the stopping criteria 
with the one given in the book.

Exercise 23: What happens if

(i) the initial interval [a,b] contains more than 
one min or max?

(ii) a is the maximum and b is the minimum, 
or vice versa?
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Quadratic Interpolation

• Based on the fact that a quadratic (2nd order) polynomial often provides a good approximation of a 
function near an optimum point.

x2x0

f(x)

quadratic polynomial

x1 x3

• Select 3 points (x0, x1 and x2) that contains only 1 optimum point of a function.

• Only one quadratic will pass through these points. Find the equation of this quadratic.

• Equate its first derivative to zero and find its optimum point, x3.

• Similar to the Golden Section Search, narrow the interval by discarding one of the points.

• Continue with the remaining 3 points and calculate a new optimum (x3).

• Iterate like this and stop when the approximate relative error drops below the tolerance value.
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Newton’s Method

• Recall that Newton-Raphson method is used to find the root of f(x) =0  as 

• Similarly the optimum points of f(x) can be found by applying N-R to f (x) = 0.

• This open method requires only one starting point.

• It also requires the 1st and 2nd derivative of f(x).

• It converges fast, but convergence is not guaranteed.

• At the end one can check the sign of f (x) to determine whether the optimum point is  a minimum 
or a maximum.

• If the derivatives are not known than their approximations can be used. This is similar to the 
Secant method that we learned in root finding.

• To avoid divergence, it is a good idea to use this method when we are close enough to the 
optimum point. So we can use a hybrid technique, where we start with a bracketing method and 
safely narrow the interval and than continue with the Newton’s method.
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Example 23:

Find the maximum of   f(x) = 2 x - 1.75 x2 + 1.1 x3 – 0.25 x4 using

(a) Golden section search (a = -2 , b = 4, es = 1%)

(b) Quadratic interpolation (x0 = -1.75 , x1 = 2 , x2 = 2.25 , perform 5 iterations)

(c) Newton’s method (x0 = 2.5 , es = 1%)

(a) Golden Section Search

iter 1:    a = -2 ,      b = 4 ,       x1 = a + R(b-a) = 1.708 ,         x2 = b - R(b-a) = 0.292
f(x1) = 1.664 ,      f(x2) = 0.460           f(x1) > f(x2)  than continue with [x2 , b].

f(x1) > f(x2)      than    xopt = x1 = 1.708 ,    ea = (1-R) * (b-a) / |xopt|* 100 = 134 %

iter 2:    a = 0.292 ,     b = 4 ,      x1 = a + R(b-a) = 2.584 , x2 = 1.708
f(x1) = 1.316 ,      f(x2) = 1.664            f(x1) < f(x2)  than continue with [a , x1 ].

f(x1) < f(x2)      than    xopt = x2 = 1.708 ,    ea = (1-R) * (b-a) / |xopt|* 100 = 83 %

iter 3:    a = 0.292 ,     b = 2.584 ,        x1 = 1.708 ,         x2 = b - R(b-a) = 1.167
f(x1) = 1.664 ,      f(x2) = 1.235            f(x1) > f(x2)  than continue with [x2 , b].

f(x1) > f(x2)      than    xopt = x1 = 1.708 ,    ea = (1-R) * (b-a) / |xopt|* 100 = 51 %

. . . . . .

iter 11:   xopt = 2.073   ,    ea = 0.9 %
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Example 23 (cont’d)

(b) Quadratic Interpolation

iter 1: x0 = -1.75 ,      x1 = 2.0 ,             x2 = 2.25

Calculate x3 = 2.0617

iter 2: x0 = 2.0 ,         x1 = 2.0617 ,        x2 = 2.25

Calculate x3 = 2.0741

iter 3: x0 = 2.0617 ,    x1 = 2.0741 ,        x2 = 2.25

Calculate x3 = 2.0779

iter 4: x0 = 2.0741 ,    x1 = 2.0779 ,        x2 = 2.25

Calculate x3 = 2.0791

iter 5: x0 = 2.0779 ,    x1 = 2.0791 ,        x2 = 2.25

Calculate x3 = 2.0786

ea = | (x3
present - x3

previous) / x3
present |* 100 = 0.02 %
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Example 23 (cont’d)

(c) Newton’s Method

f (x) = 2 – 3.5 x + 3.3 x2 – x3 ,     f (x) = -3.5 +6.6 x – 3 x2

x0 = 2.25

iter 1: x1 =  x0 - f (x0) / f (x0) = 2.19565

ea = | (x1 - x0) / x1 |* 100 = 13.9 %

iter 2: x2 =  x1 - f (x1) / f (x1) = 2.0917

ea = | (x2 - x1) / x2 |* 100 = 5.0 %

iter 3: x3 =  x2 - f (x2) / f (x2) = 2.07951

ea = | (x3 - x2) / x3 |* 100 = 0.6 %


